题目内容

若在直角坐标平面第一象限内,点的坐标(x,y)满足x+yn,并且x,y都小于n(nN*)的整点(横、纵坐标均为整数)的个数记为an.

(1)求a3,a4,a5并写出数列{an}的通项公式an=f(n)(不要求证明);

(2)设列数{bn}满足bn=n2-2an,Tn=2n-1b1+2n-2b2+…+2bn-1+bn,求Tn.

解:(1)满足条件的点(x,y)在x>0,表示的平面区域内,如图阴影部分.

?

∴不难得出a3=1,a4=2,a5=3,                                                                              ?

an=1+2+3+…+(n-2)?

=.                                                                                                      ?

(2)bn=n2-2an=3n-2,                                                                                                  ?

bn+1-bn=3.∴数列{bn}是以1为首项,公差为3的等差数列.                                   ?

Tn=2n-1b1+2n-2b2+…+2bn-1+bn?

=2n-1+2n-2·4+…+2(3n-5)+(3n-2),                                                                        ①?

∴2Tn=2n+2n-1·4+…+22(3n-5)+2(3n-2).                                                          ②?

②-①得Tn=2n+3(2n-1+2n-2+…+2)-(3n-2)?

=2n+-3n+2=2n+2-3n-4.?

Tn=2n+2-3n-4.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网