题目内容
(2013•长春一模)等比数列{an}的前n项和为Sn,a1=
,且S2+
a2=1.
(1)求数列{an}的通项公式;
(2)记bn=log3
,求数列{
}的前n项和Tn.
| 2 |
| 3 |
| 1 |
| 2 |
(1)求数列{an}的通项公式;
(2)记bn=log3
| ||
| 4 |
| 1 |
| bn•bn+2 |
分析:(1)设等比数列的公比为q,根据a1=
,S2+
a2=1建立关于q的等式,从而可求出数列{an}的通项公式;
(2)先求出数列{bn}的通项公式,然后根据数列{
}的通项的特点利用裂项求和法进行求和即可.
| 2 |
| 3 |
| 1 |
| 2 |
(2)先求出数列{bn}的通项公式,然后根据数列{
| 1 |
| bn•bn+2 |
解答:解:(1)设等比数列的公比为q,由题意a1=
,S2+
a2=1,
所以
+
q+
•
q=1,即q=
,
因此an=a1•qn-1=
•(
)n-1=
.(6分)
(2)bn=log3
=log33-2n=-2n,
所以
=
=
•
=
(
-
),
Tn=
(
-
+
-
+…+
-
+
-
)=
(1+
-
-
)=
(
-
-
).(12分)
| 2 |
| 3 |
| 1 |
| 2 |
所以
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 3 |
因此an=a1•qn-1=
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3n |
(2)bn=log3
| ||
| 4 |
所以
| 1 |
| bn•bn+2 |
| 1 |
| 2n•2(n+2) |
| 1 |
| 4 |
| 1 |
| n(n+2) |
| 1 |
| 8 |
| 1 |
| n |
| 1 |
| n+2 |
Tn=
| 1 |
| 8 |
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 8 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 8 |
| 3 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
点评:本小题主要考查运用数列基础知识求解数列的通项公式,其中还包括对数的运算与裂项求和的应用技巧,属于基础题.
练习册系列答案
相关题目