题目内容
分析:设出圆柱的上底面半径为r,球的半径与上底面夹角为α,求出圆柱的侧面积表达式,求出最大值,计算球的表面积,即可得到两者的差值.
解答:解:设圆柱的上底面半径为r,球的半径与上底面夹角为α,则r=Rcosα,圆柱的高为2Rsinα,圆柱的侧面积为:2πR2sin2α,当且仅当α=
时,sin2α=1,圆柱的侧面积最大,圆柱的侧面积为:2πR2,球的表面积为:4πR2,球的表面积与该圆柱的侧面积之差是:2πR2.
故答案为:2πR2
| π |
| 4 |
故答案为:2πR2
点评:本题是基础题,考查球的内接圆柱的知识,球的表面积,圆柱的侧面积的最大值的求法,考查计算能力,常考题型.
练习册系列答案
相关题目