题目内容
已知△ABC的三内角A、B、C的对边分别是a,b,c,面积为S△ABC,且
=(b2+c2-a2,-2),
=(sinA,S△ABC),
⊥
.
(1)求函数f(x)=4cosxsin(x-
)在区间[0,
]上的值域;
(2)若a=3,且sin(B+
)=
,求b.
| m |
| n |
| m |
| n |
(1)求函数f(x)=4cosxsin(x-
| A |
| 2 |
| π |
| 2 |
(2)若a=3,且sin(B+
| π |
| 3 |
| ||
| 3 |
(1)∵
=(b2+c2-a2,-2),
=(sinA,S△ABC),
⊥
,
∴
•
=(b2+c2-a2)sinA-2S△ABC=0,
又a2=b2+c2-2bccosA,即b2+c2-a2=2bccosA,且S△ABC=
bcsinA,
∴2bccosAsinA-2×
bcsinA=0,即2bccosAsinA-bcsinA=0,
∴cosA=
,又A为三角形的内角,
∴A=
,
函数f(x)=4cosxsin(x-
)=4cosxsin(x-
)
4cosx(
sinx-
cosx)=2
sinxcosx-2cos2x
=
sin2x-cos2x-1=2sin(2x-
)-1,
∵x∈[0,
],∴2x-
∈[-
,
],
∴-
≤sin(2x-
)≤1,
∴-2≤f(x)≤1,
则f(x)的值域为[-2,1];
(2)由sin(B+
)=
,得到
<B+
<π,
∴cos(B+
)=-
=-
,
∴sinB=[(B+
)-
]
=sin(B+
)cos
-cos(B+
)sin
=
×
+
×
=
,
又a=3,sinA=
,
∴由正弦定理
=
得:b=
=1+
.
| m |
| n |
| m |
| n |
∴
| m |
| n |
又a2=b2+c2-2bccosA,即b2+c2-a2=2bccosA,且S△ABC=
| 1 |
| 2 |
∴2bccosAsinA-2×
| 1 |
| 2 |
∴cosA=
| 1 |
| 2 |
∴A=
| π |
| 3 |
函数f(x)=4cosxsin(x-
| A |
| 2 |
| π |
| 6 |
4cosx(
| ||
| 2 |
| 1 |
| 2 |
| 3 |
=
| 3 |
| π |
| 6 |
∵x∈[0,
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴-
| 1 |
| 2 |
| π |
| 6 |
∴-2≤f(x)≤1,
则f(x)的值域为[-2,1];
(2)由sin(B+
| π |
| 3 |
| ||
| 3 |
| 3π |
| 4 |
| π |
| 3 |
∴cos(B+
| π |
| 3 |
1-sin2(B+
|
| ||
| 3 |
∴sinB=[(B+
| π |
| 3 |
| π |
| 3 |
=sin(B+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=
| ||
| 3 |
| 1 |
| 2 |
| ||
| 3 |
| ||
| 2 |
| ||||
| 6 |
又a=3,sinA=
| ||
| 2 |
∴由正弦定理
| a |
| sinA |
| b |
| sinB |
| asinB |
| sinA |
| 6 |
练习册系列答案
相关题目
已知△ABC的三内角A,B,C成等差数列,则 tan(A+C)=( )
A、
| ||||
B、-
| ||||
C、-
| ||||
D、
|