题目内容
6.某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的不同种数为20.分析 由题意,可用插空法求解,把不中的四枪看作是四个格板,格开了五个空隙,再将命中的四枪看作四个物体,由于其中有连中的三枪,此三枪绑定看作是一个物体,先插入此物体,再插入剩余的1个物体,由此计算出所有不同的情况即可选出正确答案.
解答 解:本题可用插空法解决,把不中的四枪看作是四个格板,它们排成一列,分出五个空隙,再将命中的四枪看作是插入五个空隙中的四个物体,由于其中有三枪连中,将它们绑定看作一个物体,然后分两步插入五个空隙:
第一步插入绑定三个物体,有5种方法;
第二步将剩下1个物体插入剩下的四个空隙中,有4种方法,
故总的插入方法有5×4=20(种).
故答案为:20.
点评 本题考点是排列、组合及简单计数问题,考查插空法与绑定法,解答的关键是理解题意将问题正确转化,插空与绑定是计数中常采用的技巧,注意体会其使用的条件.
练习册系列答案
相关题目
16.某中学有甲乙两个文科班进行数学考试,按照大于或等于120分为优秀,120分以下为非优秀统计成绩后,得到如下列联表:
(Ⅰ)用分层抽样的方法在优秀的学生中抽6人,其中甲班抽多少人?
(Ⅱ)在上述抽取的6人中选2人,求恰有一名同学在乙班的概率;
(Ⅲ)计算出统计量k2,若按95%可靠性要求能否认为“成绩与班级有关”.
下面的临界值表代参考:
(参考公式k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$其中n=a+b+c+d)
| 优秀 | 非优秀 | 合计 | |
| 甲 | 20 | 5 | 25 |
| 乙 | 10 | 15 | 25 |
| 合计 | 30 | 20 | 50 |
(Ⅱ)在上述抽取的6人中选2人,求恰有一名同学在乙班的概率;
(Ⅲ)计算出统计量k2,若按95%可靠性要求能否认为“成绩与班级有关”.
下面的临界值表代参考:
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |