题目内容
已知数列an的各项都为正数,a1=1,前n项和Sn满足Sn-Sn-1=
+
(n≥2).
(Ⅰ)求数列an的通项公式;
(Ⅱ)令bn=
(n∈N*),数列bn的前n项和为Tn,若an+1≥λTn对任意正整数n都成立,求实数λ的取值范围.
| Sn |
| Sn-1 |
(Ⅰ)求数列an的通项公式;
(Ⅱ)令bn=
| 1 |
| anan+1 |
分析:(I)有数列an的前n项和Sn满足Sn-Sn-1=
+
(n≥2)⇒
-
=1,先求出Sn,在求出数列an的通项公式;
(II)有(I)得到an又有bn=
(n∈N*),得到数列bn的通项公式,再利用求和方法的其前n项和然后解不等式.
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
(II)有(I)得到an又有bn=
| 1 |
| anan+1 |
解答:解:(Ⅰ)∵Sn-Sn-1=
+
,
∴(
+
)(
-
)=
+
,
又∵an>0,∴
+
>0,∴
-
=1(n≥2),
∴数列{
}是等差数列,首项为
=1,公差为1,
∴
=1+n-1=n,∴Sn=n2
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1;
又a1=1,∴数列an的通项公式为an=2n-1.
(Ⅱ)bn=
=
=
(
-
),
∴Tn=
(1-
+
-
++
-
)=
(1-
)=
.
由an+1≥λTn得2n+1≥λ×
对任意正整数n都成立,
∴(2n+1)2≥λn,
∴λ≤
=
=4n+4+
.
令f(x)=4x+
(x≥1),则f′(x)=4-
>0,
∴f(x)在[1,+∞)上递增,
∴对任意正整数n,4n+
的最小值为5,∴λ≤9.
| Sn |
| Sn-1 |
∴(
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
又∵an>0,∴
| Sn |
| Sn-1 |
| Sn |
| Sn-1 |
∴数列{
| Sn |
| S1 |
∴
| Sn |
当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1;
又a1=1,∴数列an的通项公式为an=2n-1.
(Ⅱ)bn=
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
由an+1≥λTn得2n+1≥λ×
| n |
| 2n+1 |
∴(2n+1)2≥λn,
∴λ≤
| (2n+1)2 |
| n |
| 4n2+4n+1 |
| n |
| 1 |
| n |
令f(x)=4x+
| 1 |
| x |
| 1 |
| x2 |
∴f(x)在[1,+∞)上递增,
∴对任意正整数n,4n+
| 1 |
| n |
点评:此题考查了已知数列an的前n项和Sn,求数列的通项还考查了裂项相消求数列的和及不等式恒成立.
练习册系列答案
相关题目