题目内容

当x在(-∞,+∞)上变化时,导函数f′(x)的符号变化如下表:
x(-∞.1)1(1,4)4(4,+∞)
f′(x)-0+0-
则函数f(x)的图象的大致形状为


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:f′(x)在(-∞,1)上小于0,在(1,4)上大于0,故f(0)是函数的极小值,同理可得f(4)是函数的极大值,由此得出结论.
解答:由图表可得函数f′(x)在(-∞,1)上小于0,在(1,4)上大于0,
即函数f(x)在(-∞,1)上是减函数,在(1,4)上是增函数,故f(0)是函数的极小值.
同理,由图表可得函数f′(x)在(1,4)上大于0,在(1,4)上小于0,
即函数f(x)在(1,4)上是增函数,在(4,+∞)上是增函数,可得f(4)是函数的极大值,
故选C.
点评:本题考查函数零点的定义和判定定理,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网