题目内容
已知向量
=(2
sin
,2),
=(cos
,cos2
)
(1)若
•
=2,求cos(x+
)的值;
(2)记f(x)=
•
,在△ABC中,角A、B、C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求f(A)的取值范围.
| m |
| 3 |
| x |
| 4 |
| n |
| x |
| 4 |
| x |
| 4 |
(1)若
| m |
| n |
| π |
| 3 |
(2)记f(x)=
| m |
| n |
(1)
•
=2
sin
cos
+2cos2
=
sin
+cos
+1
=2sin(
+
)+1.
∵
•
=2
∴sin(
+
)=
.
cos(x+
)=1-2sin2(
+
)=
.
(2)∵(2a-c)cosB=bcosC,
由正弦定理得(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB-sinCcosB=sinBcosC,
∴2sinAcosB=sin(B+C).
∵A+B+C=π,∴sin(B+C)sinA,且sinA≠0,
∴cosB=
,B=
,
∴0<A<
.∴
<
+
<
,
<sin(
+
) <1
又∵f(x)=
•
=2sin(
+
)+1,∴f(A)=2sin(
+
)+1
故f(A)的取值范围是(2,3)
| m |
| n |
| 3 |
| x |
| 4 |
| x |
| 4 |
| x |
| 4 |
| 3 |
| x |
| 2 |
| x |
| 2 |
=2sin(
| x |
| 2 |
| π |
| 6 |
∵
| m |
| n |
∴sin(
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
cos(x+
| π |
| 3 |
| x |
| 2 |
| π |
| 6 |
| 1 |
| 2 |
(2)∵(2a-c)cosB=bcosC,
由正弦定理得(2sinA-sinC)cosB=sinBcosC,
∴2sinAcosB-sinCcosB=sinBcosC,
∴2sinAcosB=sin(B+C).
∵A+B+C=π,∴sin(B+C)sinA,且sinA≠0,
∴cosB=
| 1 |
| 2 |
| π |
| 3 |
∴0<A<
| 2π |
| 3 |
| π |
| 6 |
| A |
| 2 |
| π |
| 6 |
| π |
| 2 |
| 1 |
| 2 |
| A |
| 2 |
| π |
| 6 |
又∵f(x)=
| m |
| n |
| x |
| 2 |
| π |
| 6 |
| A |
| 2 |
| π |
| 6 |
故f(A)的取值范围是(2,3)
练习册系列答案
相关题目