题目内容
(本题满分15分)
求函数在区间上的最大值、最小值
解析:任取,且,(2分)
(6分)
∵,,
所以,,,
函数在上是增函数, (3分)
最大值为,最小值为. (4分)
(本题满分15分)设数列的前项和为, 且. 设数列的前项和为,且. (1)求.
(2) 设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立
(本题满分15分)设函数.
(Ⅰ)若函数在上单调递增,在上单调递减,求实数的最大值;
(Ⅱ)若对任意的,都成立,求实数的取值范围.
注:为自然对数的底数.
(本题满分15分)已知直线与曲线相切
1)求b的值;
2)若方程在上恰有两个不等的实数根,求
①m的取值范围;
②比较的大小
(本题满分15分)已知抛物线:(),焦点为,直线交抛物线于、两点,是线段的中点,
过作轴的垂线交抛物线于点,
(1)若抛物线上有一点到焦点的距离为,求此时的值;
(2)是否存在实数,使是以为直角顶点的直角三角形?若存在,求出的值;若不存在,说明理由。
在中,三边a,b,c满足:.
⑴探求的最长边;
⑵求的最大角.