题目内容
(2009•嘉定区一模)若
=0,则实数a的取值范围是
| lim |
| n→∞ |
| 2n |
| 2n+1+an |
{a|a<-2或a>2}
{a|a<-2或a>2}
.分析:由已知,
=
=0,得出|
|>1,解出即可.
| lim |
| n→∞ |
| 2n |
| 2n+1+an |
| lim |
| n→∞ |
| 1 | ||
2 +(
|
| a |
| 2 |
解答:解:
=
=0,∴|
|>1,∴
>1,或
< -1,即a<-2或a>2
故答案为:{a|a<-2或a>2}
| lim |
| n→∞ |
| 2n |
| 2n+1+an |
| lim |
| n→∞ |
| 1 | ||
2 +(
|
| a |
| 2 |
| a |
| 2 |
| a |
| 2 |
故答案为:{a|a<-2或a>2}
点评:本题考查函数的极限,分子分母同除以2n进行化简是关键.
练习册系列答案
相关题目