题目内容

已知数列{an}中,a1=1,且点P(an,an+1)(n∈N*)在直线x-y+1=0上.
(1)求数列{an}的通项公式;
(2)若函数f(n)=
1
n+a1
+
1
n+a2
+
1
n+a3
+…+
1
n+an
(n∈N*,且n≥2),求函数f(n)的最小值.
分析:(1)把点P代入直线方程中,可得an+1-an=1,进而可知数列{an}是以1为首项,1为公差的等差数列,根据等差数列的通项公式即可求得an
(2)根据(1)中求得的数列{an}的通项公式代入f(n)和f(n+1),可求得f(n+1)-f(n)>0,进而推断所以f(n)是单调递增,故可知f(2)是函数f(n)的最小值.
解答:解:(1)由点P(an,an+1)在直线x-y+1=0上,
即an+1-an=1,且a1=1,数列{an}是以1为首项,1为公差的等差数列,
an=1+(n+1)•1=n(n≥2),a1=1同样满足,
所以an=n.
(2)f(n)=
1
n+1
+
1
n+2
++
1
2n
f(n+1)=
1
n+2
+
1
n+3
+
1
n+4
+
1
2n+1
+
1
2n+2
f(n+1)-f(n)=
1
2n+1
+
1
2n+2
-
1
n+1
1
2n+2
+
1
2n+2
-
1
n+1
=0

所以f(n)是单调递增,
故f(n)的最小值是f(2)=
7
12
点评:本题主要考查了等差数列的通项公式.属基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网