题目内容

8.已知点O是△ABC的外接圆圆心,且AB=3,AC=4.若存在非零实数x、y,使得$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$,且x+2y=1,则cos∠BAC的值为(  )
A.$\frac{2}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{1}{3}$

分析 对等式$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$两边分别乘以$\overrightarrow{AB}$,$\overrightarrow{AC}$便可得到$\left\{\begin{array}{l}{\overrightarrow{AO}•\overrightarrow{AB}=x{\overrightarrow{AB}}^{2}+y\overrightarrow{AB}•\overrightarrow{AC}}\\{\overrightarrow{AO}•\overrightarrow{AC}=x\overrightarrow{AB}•\overrightarrow{AC}+y{\overrightarrow{AC}}^{2}}\end{array}\right.$,根据O为△ABC外接圆的圆心,便可得到$\overrightarrow{AO}•\overrightarrow{AB}=\frac{9}{2},\overrightarrow{AO}•\overrightarrow{AC}=8$,从而可以得出$\left\{\begin{array}{l}{\frac{9}{2}=9x+12ycos∠BAC}\\{8=12xcos∠BAC+16y}\end{array}\right.$,然后联立x+2y=1即可解出x,y,cos∠BAC,并需满足x,y非零,这便可得出cos∠BAC.

解答 解:如图,

由$\overrightarrow{AO}=x\overrightarrow{AB}+y\overrightarrow{AC}$得:
$\left\{\begin{array}{l}{\overrightarrow{AO}•\overrightarrow{AB}=x{\overrightarrow{AB}}^{2}+y\overrightarrow{AB}•\overrightarrow{AC}}\\{\overrightarrow{AO}•\overrightarrow{AC}=x\overrightarrow{AB}•\overrightarrow{AC}+y{\overrightarrow{AC}}^{2}}\end{array}\right.$;
$\overrightarrow{AO}•\overrightarrow{AB}=|\overrightarrow{AO}||\overrightarrow{AB}|•\frac{\frac{1}{2}|\overrightarrow{AB}|}{|\overrightarrow{AO}|}=\frac{9}{2}$,$\overrightarrow{AO}•\overrightarrow{AC}=|\overrightarrow{AO}||\overrightarrow{AC}|$$•\frac{\frac{1}{2}|\overrightarrow{AC}|}{|\overrightarrow{AO}|}$=8;
∴$\left\{\begin{array}{l}{\frac{9}{2}=9x+12ycos∠BAC}\\{8=12xcos∠BAC+16y}\end{array}\right.$,联立x+2y=1解得,$\left\{\begin{array}{l}{x=\frac{1}{10}}\\{y=\frac{9}{20}}\\{cos∠BAC=\frac{2}{3}}\end{array}\right.$或$\left\{\begin{array}{l}{x=0}\\{y=\frac{1}{2}}\\{cos∠BAC=\frac{3}{4}}\end{array}\right.$;
∵x,y都不为0;
∴$cos∠BAC=\frac{2}{3}$.
故选:A.

点评 考查向量数量积的运算及其计算公式,三角形外接圆圆心的概念,余弦函数的定义,能够通过联立三个方程解出三元二次方程组.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网