题目内容

已知a、b、c是△ABC三边长,关于x的方程ax2-2
c2-b2
x-b=0(a>c>b)
的两根之差的平方等于4,△ABC的面积S=10
3
,c=7

(I)求∠C;
(II)求a、b的值.
(I)设x1,x2为方程ax2-2
c2-b2
x-b=0
的两根.
x1+x2=
2
c2-b2
a
x1x2=
-b
a

(x1-x2)2=(x1+x2)2-4x1x2=
4(c2-b2)
a2
+
4b
a
=4

∴a2+b2-c2=ab.
cosC=
a2+b2-c2
2ab

cosC=
1
2

∴∠C=60°;
(II)由S=
1
2
absinC=10
3
,∴ab=40.①
由余弦定理c2=a2+b2-2abcosC,
即c2=(a+b)2-2ab(1+cos60°),
72=(a+b)2-2×40×(1+
1
2
)

∴a+b=13.②
由①、②,得a=8,b=5.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网