题目内容

已知:a,b,c同号且互不相等,a+b+c=1,求证:++>9.

思路分析:本题解法较多,已知条件中a+b+c可看作是“1”的代换,然后两两结合使用基本不等式,或者看作6个正数的均值不等式.

证法一:++=

=1++++1++++1

=(+)+(+)+(+)+3.

∵a,b,c同号,且a+b+c=1.

∴a>0,b>0,c>0.

,,,,,均大于0.又a,b,c互不相等,由基本不等式,得

+>2,+>2,+>2.

于是,左边>2+2+2+3=9.

++>9.

证法二:++=

=3+(+++++).

∵a,b,c同号且a+b+c=1,

∴a>0,b>0,c>0.

,,,,,均大于0,又a,b,c互不相等.由6个正数的均值不等式,得

左边=3+(+++++)≥3+=3+6=9.

++=9.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网