题目内容
已知数列{an}中,a1=1,前n项和为sn,当n≥2,(n∈N*),an=
sn-
sn-1-1.
(1)求{an}的通项公式;
(2)设数列{n•|an|}的前n项和为Tn,若对任意n∈N*,都有Tn<C,求正整数C的最小值;
(3)证明:对一切n≥2,n∈N*时,n-
<
+
+
+…+
<n+
.
| 3 |
| 2 |
| 3 |
| 4 |
(1)求{an}的通项公式;
(2)设数列{n•|an|}的前n项和为Tn,若对任意n∈N*,都有Tn<C,求正整数C的最小值;
(3)证明:对一切n≥2,n∈N*时,n-
| 1 |
| 2 |
| |a2| |
| |a1| |
| |a3|-1 |
| |a2|-1 |
| |a4|-1 |
| |a3|-1 |
| |an+1|-1 |
| |an|-1 |
| 1 |
| 2 |
分析:(1)由
得an+1-an=
an+1-
an,由此能求出{an}的通项公式.
(2)依题意:Tn=1+2×
+3×(
)2+…+n(
)n-12Tn=2+2×1+3×
+…+n(
)n-2,再由错位相减法能够求出满足条件Tn<c的最小正整数.
(3)记L=
+
+…+
.一方面L>
+1+…+1=n-
,另一方面L≤
+(1+
)+(1+
)+…+(1+
)=
+(n-1)+(
+
+…+
)=n-
+1-(
)n-1<n+
.由此能够证明n-
<
+
+
+…+
<n+
.
|
| 3 |
| 2 |
| 3 |
| 4 |
(2)依题意:Tn=1+2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)记L=
| |a2| |
| |a1| |
| |a3|-1 |
| |a2|-1 |
| |an+1|-1 |
| |an|-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| |a2| |
| |a1| |
| |a3|-1 |
| |a2|-1 |
| |a4|-1 |
| |a3|-1 |
| |an+1|-1 |
| |an|-1 |
| 1 |
| 2 |
解答:解:(1)由
得an+1-an=
an+1-
an
所以an+1=-
an(n≥2)a2,a3,…an成等比…(3分)
故an=
…(4分)
(2)依题意:Tn=1+2×
+3×(
)2+…+n(
)n-12Tn=2+2×1+3×
+…+n(
)n-2
两式错们相减得:Tn=2+1+
+…+(
)n-2-n(
)n-1=4-(
)n-2-n(
)n-1
所以对一切n∈N+有Tn<4且Tn是递增的
又因为T4=1+2×
+3×(
)2+4(
)3>3
所以满足条件Tn<c的最小正整数c=4…(8分)
(3)记L=
+
+…+
一方面|
|=
,n≥2时
=
=
=
>1
所以L>
+1+…+1=n-
…(10分)
另一方面|
|=
,n≥2时
=
=
=
=1+
=1+
≤1+
(只有n=2时取等)
所以L≤
+(1+
)+(1+
)+…+(1+
)=
+(n-1)+(
+
+…+
)
=n-
+1-(
)n-1<n+
,
∴对一切n≥2,n∈N*时,n-
<
+
+
+…+
<n+
.…(12分)
|
| 3 |
| 2 |
| 3 |
| 4 |
所以an+1=-
| 1 |
| 2 |
故an=
|
(2)依题意:Tn=1+2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
两式错们相减得:Tn=2+1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
所以对一切n∈N+有Tn<4且Tn是递增的
又因为T4=1+2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
所以满足条件Tn<c的最小正整数c=4…(8分)
(3)记L=
| |a2| |
| |a1| |
| |a3|-1 |
| |a2|-1 |
| |an+1|-1 |
| |an|-1 |
一方面|
| a2 |
| a1 |
| 1 |
| 2 |
| |an+1|-1 |
| |an|-1 |
(
| ||
(
|
| 2n-1 |
| 2(2n-1-1) |
2n-1-
| ||
| 2n-1-1 |
所以L>
| 1 |
| 2 |
| 1 |
| 2 |
另一方面|
| a2 |
| a1 |
| 1 |
| 2 |
| |an+1|-1 |
| |an|-1 |
(
| ||
(
|
| 2n-1 |
| 2(2n-1-1) |
2n-1-
| ||
| 2n-1-1 |
| 1 |
| 2(2n-1-1) |
| 1 |
| 2n-2 |
| 1 |
| 2n-1 |
所以L≤
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
=n-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴对一切n≥2,n∈N*时,n-
| 1 |
| 2 |
| |a2| |
| |a1| |
| |a3|-1 |
| |a2|-1 |
| |a4|-1 |
| |a3|-1 |
| |an+1|-1 |
| |an|-1 |
| 1 |
| 2 |
点评:本题考查数列和不等式的综合,解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|