题目内容
【题目】如图1,已知四边形BCDE为直角梯形,
,
,且
,A为BE的中点
将
沿AD折到
位置
如图
,连结PC,PB构成一个四棱锥
.
![]()
Ⅰ
求证
;
Ⅱ
若
平面ABCD.
求二面角
的大小;
在棱PC上存在点M,满足
,使得直线AM与平面PBC所成的角为
,求
的值.
【答案】
Ⅰ
详见解析;
Ⅱ
①
,②
或
.
【解析】
Ⅰ
可以通过已知证明出
平面PAB,这样就可以证明出
;
Ⅱ
以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,可以求出相应点的坐标,求出平面PBC的法向量为
、平面PCD的法向量
,利用空间向量的数量积,求出二面角
的大小;
求出平面PBC的法向量,利用线面角的公式求出
的值.
证明:
Ⅰ
在图1中,
,
,
![]()
为平行四边形,
,
,
,
当
沿AD折起时,
,
,即
,
,
又
,
平面PAB,
又
平面PAB,
.
解:
Ⅱ
以点A为坐标原点,分别以AB,AD,AP为x,y,z轴,建立空间直角坐标系,由于
平面ABCD
则
0,
,
0,
,
1,
,
0,
,
1,![]()
1,
,
1,
,
0,
,
设平面PBC的法向量为
y,
,
则
,取
,得
0,
,
设平面PCD的法向量
b,
,
则
,取
,得
1,
,
设二面角
的大小为
,可知为钝角,
则
,
.
二面角
的大小为
.
设AM与面PBC所成角为
,
0,
,1,
,
,
,
平面PBC的法向量
0,
,
直线AM与平面PBC所成的角为
,
,
解得
或
.
【题目】由中央电视台综合频道(
)和唯众传媒联合制作的《开讲啦》是中国首档青春电视公开课。每期节目由一位知名人士讲述自己的故事,分享他们对于生活和生命的感悟,给予中国青年现实的讨论和心灵的滋养,讨论青年们的人生问题,同时也在讨论青春中国的社会问题,受到青年观众的喜爱,为了了解观众对节目的喜爱程度,电视台随机调查了
、
两个地区的100名观众,得到如下的
列联表:
非常满意 | 满意 | 合计 | |
| 30 |
| |
|
|
| |
合计 |
已知在被调查的100名观众中随机抽取1名,该观众是
地区当中“非常满意”的观众的概率为
,且
.
(Ⅰ)现从100名观众中用分层抽样的方法抽取20名进行问卷调查,则应抽取“满意”的
、
地区的人数各是多少;
(Ⅱ)完成上述表格,并根据表格判断是否有
的把握认为观众的满意程度与所在地区有关系;
(Ⅲ)若以抽样调查的频率为概率,从
地区随机抽取3人,设抽到的观众“非常满意”的人数为
,求
的分布列和期望.
|
|
|
|
|
|
|
|
|
|
附:参考公式:![]()