题目内容
已知f(x+
)=x3+
,则f(x)=
| 1 |
| x |
| 1 |
| x3 |
x3-3x
x3-3x
.分析:由f(x+
)=x3+
=(x+
)(x2 -1+
)=(x+
)[(x+
)2- 3],能求出f(x).
| 1 |
| x |
| 1 |
| x3 |
| 1 |
| x |
| 1 |
| x2 |
| 1 |
| x |
| 1 |
| x |
解答:解:∵f(x+
)=x3+
=(x+
)(x2 -1+
)
=(x+
)[(x+
)2- 3]
=(x+
)3-3(x+
),
∴f(x)=x3-3x.
故答案为:x3-3x.
| 1 |
| x |
| 1 |
| x3 |
=(x+
| 1 |
| x |
| 1 |
| x2 |
=(x+
| 1 |
| x |
| 1 |
| x |
=(x+
| 1 |
| x |
| 1 |
| x |
∴f(x)=x3-3x.
故答案为:x3-3x.
点评:本题考查函数解析式的求解及常用方法,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目