题目内容
已知函数f(x)=
,数列{an}满足对于一切n∈N*有an>1,且an+1=f(an).数列{bn}满足,bn=
(a>0且a≠1)设k,l∈N*,bk=
,bl=
.
(Ⅰ)求证:数列{ln
}为等比数列,并指出公比;
(Ⅱ)若k+l=5,求数列{bn}的通项公式;
(Ⅲ)若k+l=M0(M0为常数),求数列{abn}从第几项起,后面的项都满足abn>1.
| x(x2+3) |
| 3x2+1 |
| 1 | ||
loga(ln
|
| 1 |
| 1+3l |
| 1 |
| 1+3k |
(Ⅰ)求证:数列{ln
| an-1 |
| an+1 |
(Ⅱ)若k+l=5,求数列{bn}的通项公式;
(Ⅲ)若k+l=M0(M0为常数),求数列{abn}从第几项起,后面的项都满足abn>1.
分析:(Ⅰ)要证数列{ln
}为等比数列,只要证明
为常数即可证,该常数即为公比
(Ⅱ)由bn=
结合(I)可得
-
=loga(ln
)-loga(ln
)=loga3,由等差数列的性质可得,loga3=
=
=-3,从而可求a,结合等差数列的通项且有k+l=5
(Ⅲ)由k+l=M0可求
,=3M0-2,由等差数列的通项可求bn,假设第m项后有足abn>1.即第m项后bn<0,于是原命题等价于
,代入解不等式可求M
| an-1 |
| an+1 |
ln
| ||
ln
|
(Ⅱ)由bn=
| 1 | ||
loga(ln
|
| 1 |
| bn+1 |
| 1 |
| bn |
| an+1-1 |
| an+1+1 |
| an-1 |
| an+1 |
| ||||
| k-l |
| 1+3l-1-3k |
| k-l |
(Ⅲ)由k+l=M0可求
| 1 |
| b1 |
|
解答:证明:(Ⅰ)∵f(x)=
,an+1=f(an)
∴an+1=
∴
=
=
=
∴ln
=ln
=3ln
故数列{ln
}为等比数列,公比为3
解:(Ⅱ)∵bn=
∴
= loga (ln
)
-
=loga(ln
)-loga(ln
)=loga3
所以数列{
}是以
为首项,公差为 loga3的等差数列.
又loga3=
=
=-3
∴a=3-
=(
)
又
=
+(k-1)(-3)=1+3l,且k+l=5
∴
=3(k+l)-2=13
∴
=13+(n-1)(-3)=16-3n⇒bn=
(Ⅲ)∵k+l=M0⇒
=3M0-2
∴
=3M0-2+(n-1)(-3)=3M0-3n+1
假设第m项后满足abn>1=a0.
∵a=(
)
∈(0,1)⇒
=logaan<0
即第m项后
<0,于是原命题等价于
⇒
⇒M0-
<M<M0+
…(15分)
∵M∈N*⇒M=M0故数列{an}从M0+1项起满足abn>1.. …(16分)
| x(x2+3) |
| 3x2+1 |
∴an+1=
| an(an2+3) |
| 3an2+1 |
∴
| an+1-1 |
| an+1+1 |
| ||
|
| an3-3an2+3 an+1 |
| an3+3an2+3an+1 |
| (an-1)3 |
| (an+1)3 |
∴ln
| an+1-1 |
| an+1+1 |
| (an-1)3 |
| (an+1)3 |
| an-1 |
| an+1 |
故数列{ln
| an-1 |
| an+1 |
解:(Ⅱ)∵bn=
| 1 | ||
loga(ln
|
∴
| 1 |
| bn |
| an-1 |
| an+1 |
| 1 |
| bn+1 |
| 1 |
| bn |
| an+1-1 |
| an+1+1 |
| an-1 |
| an+1 |
所以数列{
| 1 |
| bn |
| 1 |
| b1 |
又loga3=
| ||||
| k-l |
| 1+3l-1-3k |
| k-l |
∴a=3-
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
又
| 1 |
| bk |
| 1 |
| b1 |
∴
| 1 |
| b1 |
∴
| 1 |
| bn |
| 1 |
| 16-3n |
(Ⅲ)∵k+l=M0⇒
| 1 |
| b1 |
∴
| 1 |
| bn |
假设第m项后满足abn>1=a0.
∵a=(
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| bn |
即第m项后
| 1 |
| bn |
|
|
⇒M0-
| 2 |
| 3 |
| 1 |
| 3 |
∵M∈N*⇒M=M0故数列{an}从M0+1项起满足abn>1.. …(16分)
点评:本题考查了等差和等比数列的综合,以及数列与不等式相结合等等知识点,属于难题.解题时请注意对数式的处理,和利用数列综合解决问题中要求数列的技巧运用.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|