题目内容

设二次函数f(x)=ax2+bx+c(a,b,c∈R,a≠0)满足条件:
(1)当x∈R时,f(x-4)=f(2-x),且f(x)≥x:
(2)当x∈(0,2)时,f(x)≤(
x+12
)2

(3)f(x)在R上的最小值为0.
求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
分析:通过三个条件先求出函数解析式f(x)=
1
4
x2+
1
2
x+
1
4
,只要x∈[1,m],就有f(x+t)≤x.那么当x=1时也成立确定出t的范围,然后研究当x=m时也应成立,利用函数的单调性求出m的最值.
解答:解:因f(x-4)=f(2-x),则函数的图象关于x=-1对称,∴-
b
2a
=-1,b=2a,
由(3),x=-1时,y=0,即a-b+c=0,由(1)得,f(1)≥1,由(2)得,f(1)≤1,
则f(1)=1,即a+b+c=1.又a-b+c=0,则b=
1
2
,a=
1
4
,c=
1
4
,故f(x)=
1
4
x2+
1
2
x+
1
4

假设存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
取x=1,有f(t+1)≤1,即
1
4
(t+1)2+
1
2
(t+1)+
1
4
≤1,解得-4≤t≤0,
对固定的t∈[-4,0],取x=m,有f(t+m)≤m,即
1
4
(t+m)2+
1
2
(t+m)+
1
4
≤m.
化简有:m2-2(1-t)m+(t2+2t+1)≤0,解得1-t-
-4t
≤m≤1-t+
-4t

故m≤1-t-
-4t
≤1-(-4)+
-4(-4)
=9
当t=-4时,对任意的x∈[1,9],
恒有f(x-4)-x=
1
4
(x2-10x+9)=
1
4
(x-1)(x-9)≤0.
∴m的最大值为9.
另解:∵f(x-4)=f(2-x)
∴函数的图象关于x=-1对称
-
b
2a
=-1
b=2a
由③知当x=-1时,y=0,即a-b+c=0
由①得 f(1)≥1,由②得 f(1)≤1
∴f(1)=1,即a+b+c=1,又a-b+c=0
∴a=
1
4
,b=
1
2
,c=
1
4

∴f(x)=
1
4
x2+
1
2
x+
1
4
…(5分)
假设存在t∈R,只要x∈[1,m],就有f(x+t)≤x
取x=1时,有f(t+1)≤1?
1
4
(t+1)2+
1
2
(t+1)+
1
4
≤1?-4≤t≤0
对固定的t∈[-4,0],取x=m,有
f(t+m)≤m?
1
4
(t+m)2+
1
2
(t+m)+
1
4
≤m?m2-2(1-t)m+(t2+2t+1)≤0?1-t-
-4t
≤m≤1-t+
-4t
…(10分)
∴m≤1-t+
-4t
1-(-4)+
-4•(-4)
=9 …(15分)
当t=-4时,对任意的x∈[1,9],恒有
f(x-4)-x=
1
4
(x2-10x+9)=
1
4
(x-1)(x-9)≤0
∴m的最大值为9. …(20分)
点评:本题考查了函数的最值问题,以及利用函数单调性进行求解最值,考查了学生的计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网