题目内容
已知数列{an}中,前n项和为Sn,a1=5,并且Sn+1=Sn+2an+2n+2(n∈N*),
(1)求a2,a3的值;
(2)设bn=
,若实数λ使得数列{bn}为等差数列,求λ的值;
(3)不等式an<(t-
)•3n对任何的n∈N*恒成立,求t的范围.
(1)求a2,a3的值;
(2)设bn=
| an+λ |
| 2n |
(3)不等式an<(t-
| n+1 |
| 2n-5 |
分析:(1)由已知可得Sn+1-Sn=an+1=2an+2n+2(n∈N*),分别令n=1,n=2可递次得到a2,a3的值;
(2)由bn=
,分别求出b1,b2,b3的值,结合数列{bn}为等差数列,可求出λ的值;
(3)不等式an<(t-
)•3n对任何的n∈N*恒成立,即t>
+
=
+
对任何的n∈N*恒成立,求出Cn的最大值,可得t的取值范围.
(2)由bn=
| an+λ |
| 2n |
(3)不等式an<(t-
| n+1 |
| 2n-5 |
| an |
| 3n |
| n+1 |
| 2n-5 |
| 2n-1•(4n+1) |
| 3n |
| n+1 |
| 2n-5 |
解答:解:(1)∵Sn+1=Sn+2an+2n+2(n∈N*),
∴Sn+1-Sn=2an+2n+2(n∈N*),
即an+1=2an+2n+2(n∈N*),
又∵Sn=2an+2n+2(n∈N*),
∴a2=2a1+23=10+8=18,
a3=2a2+24=36+16=52
(2)∵bn=
,
∴b1=
=
,
b2=
=
,
b3=
=
,
∵数列{bn}为等差数列
∴2b2=b1+b3=2×
=
+
解得λ=0
(3)由(2)得bn=
,
∴b1=
,
b2=
∴d=b2-b1=2,
即数列{bn}是公差d=2,首项为b1=
的等差数列
∴bn=
=
+2(n-1)=
∴an=2n-1•(4n+1)
若an<(t-
)•3n对任何的n∈N*恒成立,
则t>
+
=
+
对任何的n∈N*恒成立,
令Cn=
+
则Cn+1=
+
则Cn+1-Cn=[
-
]+(
-
)
=
+
显然当n≥3时,Cn+1-Cn<0,即Cn的值随n的增大而减小
又∵C1=1,C2=-1,C3=5
∴t>5
∴Sn+1-Sn=2an+2n+2(n∈N*),
即an+1=2an+2n+2(n∈N*),
又∵Sn=2an+2n+2(n∈N*),
∴a2=2a1+23=10+8=18,
a3=2a2+24=36+16=52
(2)∵bn=
| an+λ |
| 2n |
∴b1=
| a1+λ |
| 2 |
| 5+λ |
| 2 |
b2=
| a2+λ |
| 22 |
| 18+λ |
| 4 |
b3=
| a3+λ |
| 23 |
| 52+λ |
| 8 |
∵数列{bn}为等差数列
∴2b2=b1+b3=2×
| 18+λ |
| 4 |
| 5+λ |
| 2 |
| 52+λ |
| 8 |
解得λ=0
(3)由(2)得bn=
| an |
| 2n |
∴b1=
| 5 |
| 2 |
b2=
| 9 |
| 2 |
∴d=b2-b1=2,
即数列{bn}是公差d=2,首项为b1=
| 5 |
| 2 |
∴bn=
| an |
| 2n |
| 5 |
| 2 |
| 4n+1 |
| 2 |
∴an=2n-1•(4n+1)
若an<(t-
| n+1 |
| 2n-5 |
则t>
| an |
| 3n |
| n+1 |
| 2n-5 |
| 2n-1•(4n+1) |
| 3n |
| n+1 |
| 2n-5 |
令Cn=
| 2n-1•(4n+1) |
| 3n |
| n+1 |
| 2n-5 |
则Cn+1=
| 2n•(4n+5) |
| 3n+1 |
| n+2 |
| 2n-3 |
则Cn+1-Cn=[
| 2n•(4n+5) |
| 3n+1 |
| 2n-1•(4n+1) |
| 3n |
| n+2 |
| 2n-3 |
| n+1 |
| 2n-5 |
=
| 2n-1•(7-4n) |
| 3n+1 |
| -2 |
| (2n-3)(2n-5) |
显然当n≥3时,Cn+1-Cn<0,即Cn的值随n的增大而减小
又∵C1=1,C2=-1,C3=5
| 25 |
| 27 |
∴t>5
| 25 |
| 27 |
点评:本题考查的知识点是等差数列的定义,恒成立问题,其中(3)的难度较大,特别是在求Cn的最大值时.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|