ÌâÄ¿ÄÚÈÝ
ijÉú²úÒûÁÏµÄÆóÒµÄâͶÈëÊʵ±µÄ¹ã¸æ·Ñ¶Ô²úÆ·½øÐдÙÏú,ÔÚÒ»ÄêÄÚ,Ô¤¼ÆÄêÏúÁ¿Q(Íò¼þ)Óë¹ã¸æ·Ñx(ÍòÔª)Ö®¼äµÄº¯Êý¹ØÏµÎªQ=(1)ÊÔ½«ÀûÈóy(ÍòÔª)±íʾΪÄê¹ã¸æ·Ñx(ÍòÔª)µÄº¯Êý.Èç¹ûÄê¹ã¸æ·ÑͶÈë100ÍòÔª,ÆóÒµÊÇ¿÷Ëð»¹ÊÇÓ¯Àû?
(2)µ±Äê¹ã¸æ·ÑͶÈë¶àÉÙÍòԪʱ,ÆóÒµÄêÀûÈó×î´ó?
˼··ÖÎö£ºÒòΪÄêÀûÈóy=(ÄêÊÕÈë)-(Äê³É±¾)-(Äê¹ã¸æ·Ñ)£¬ËùÒԾͰÑÄêÀûÈó±íʾ³ÉÄê¹ã¸æ·ÑµÄº¯Êý¹ØÏµÊ½.ÀûÓõ¼ÊýÇó³ö×îÖµ.
½â£º(1)ÓÉÌâÒâ,ÿÄê²úÏúQÍò¼þ,¹²¼Æ³É±¾Îª(32Q+3)ÍòÔª.
ÏúÊÛÊÕÈëÊÇ(32Q+3)¡¤150%+x¡¤50%.
¡àÄêÀûÈóy=(ÄêÊÕÈë)-(Äê³É±¾)-(Äê¹ã¸æ·Ñ)=
(32Q+3-x)=
(32¡Á
+3-x)=
(x+1)(x¡Ý0).
¡àËùÇóµÄº¯Êý¹ØÏµÊ½Îªy=
(x+1)(x¡Ý0).
µ±x=100ʱ,y£¼0,¼´µ±Äê¹ã¸æ·ÑͶÈë100ÍòԪʱ,ÆóÒµ¿÷Ëð.
(2)ÓÉy=
(x+1)(x¡Ý0)¿ÉµÃ
y¡ä=
=0.
Áîy¡ä=0,Ôòx2+2x-63=0.
¡àx=-9(ÉáÈ¥)»òx=7.
ÓÖx¡Ê(0,7)ʱ,f¡ä(x)£¾0£»x¡Ê(7,+¡Þ)ʱ,f¡ä(x)£¼0,
¡àf(x)¼«´óÖµ=f(7)=42.
ÓÖ¡ßÔÚ(0,+¡Þ)ÉÏÖ»ÓÐÒ»¸ö¼«Öµµã,
¡àf(x)max=f(x)¼«´óÖµ=f(7)=42.
¹Êµ±Äê¹ã¸æ·ÑͶÈë7ÍòԪʱ,ÆóÒµÄêÀûÈó×î´ó.
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿