题目内容
【题目】抛物线
(
)的焦点为
,已知点
,
为抛物线上的两个动点,且满足
.过弦
的中点
作抛物线准线的垂线
,垂足为
,则
的最大值为__________.
【答案】1
【解析】设
,在三角形ABF中,用余弦定理得到
,
故最大值为1.
故答案为:1.
点睛:本题主要考查了抛物线的简单性质.解题的关键是利用了抛物线的定义。一般和抛物线有关的小题,很多时可以应用结论来处理的;平时练习时应多注意抛物线的结论的总结和应用。尤其和焦半径联系的题目,一般都和定义有关,实现点点距和点线距的转化。
【题型】填空题
【结束】
17
【题目】设
的内角
,
,
所对的边分别为
,
,
,且
,
.
(1)当
时,求
的值;
(2)当
的面积为
时,求
的周长.
【答案】(1)
(2)8
【解析】试题分析:(1)由
,
,由正弦定理得到
;(2)根据面积公式得到
,再由余弦定理得到
,进而得到
.
解析:
(1)因为
,所以
由正弦定理
,可得
(2)因为
的面积
所以
由余弦定理
得
,即
所以
,
所以
所以,
的周长为
练习册系列答案
相关题目