题目内容
17.已知四棱锥P-ABCD中,底面ABCD为正方形,边长为a,PB=$\sqrt{3}$a,PD=a,PA=PC=$\sqrt{2}$a,且PD是四棱锥的高.(1)在四棱锥内翻入一球,求球的最大半径;
(2)求四棱锥外接球的半径.
分析 (1)当所放的球与四棱锥各面都相切时球的半径最大,即球心到各个面的距离均相等,联想到用体积法求解;
(2)(2)四棱锥可补成正方体,其直径为PB=$\sqrt{3}$a,故可求四棱锥外接球的半径.
解答 解:(1)设此球半径为R,最大的球应与四棱锥各个面都相切,
设球心为S,连SA、SB、SC、SD、SP,则把此四棱锥分为五个棱锥,设它们的高均为R
∵VP-ABCD=VS-PDA+VS-PDC+VS-ABCD+VS-PAB+VS-PBC
∴$\frac{1}{3}•a•a•a$=$\frac{1}{3}$R(2×$\frac{1}{2}•a•a$+2×$\frac{1}{2}•a•\sqrt{2}a$)
∴R=$\frac{2-\sqrt{2}}{2}$a.
∴球的最大半径为$\frac{2-\sqrt{2}}{2}$a
(2)四棱锥可补成正方体,其直径为PB=$\sqrt{3}$a,故四棱锥外接球的半径为$\frac{\sqrt{3}}{2}$a.
点评 本题主要考查棱锥的性质以及内切外接的相关知识点.“内切”和“外接”等有关问题,首先要弄清几何体之间的相互关系,主要是指特殊的点、线、面之间关系,然后把相关的元素放到这些关系中解决问题,
练习册系列答案
相关题目
12.已知平面α,直线a、b,则下列说法中正确的个数是( )
①若a?α,则a∥α;
②若a∥b,b?α,则a∥α;
③若a∥α,b∥α,则a∥b;
④若a与α内的任何一条直线都不相交,则a∥α.
①若a?α,则a∥α;
②若a∥b,b?α,则a∥α;
③若a∥α,b∥α,则a∥b;
④若a与α内的任何一条直线都不相交,则a∥α.
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
5.苹果公司的新一代智能手机iPhone6于2014年9月正式向全球发售,在即将发售之前,我国某调研机构对一个大型企业收入较高的2000名员工对iPhone6的看法进行了调查,得到如下数据:
(1)如果用频率代替频率,分别求男员工、女员工计划购买iPhone6的概率;
(2)若从计划购买的员工中按照性别分层抽样的方法抽取6人进行座谈,再从这6人中随机选取2人分别赠送苹果公司最新产品各一台,记获得赠品的女员工人数为X,试求X的分布列及期望.
| 对iPhone6的态度 | 计划购买的女员工 | 不计划购买的女员工 | 计划购买的男员工 | 不计划购买的男员工 |
| 频数 | 200 | 600 | 400 | 800 |
(2)若从计划购买的员工中按照性别分层抽样的方法抽取6人进行座谈,再从这6人中随机选取2人分别赠送苹果公司最新产品各一台,记获得赠品的女员工人数为X,试求X的分布列及期望.