题目内容
设函数f(x)=x(x-1)2.
(1)求f(x)的极小值;
(2)讨论函数F(x)=f(x)+2x2-x-2axlnx零点的个数,并说明理由?
(3)设函数g(x)=ex-2x2+4x+t(t为常数),若使3-f(x)≤x+m≤g(x)在[0,+∞)上恒成立的实数m有且只有一个,求实数t的值.(e7>103)
(1)求f(x)的极小值;
(2)讨论函数F(x)=f(x)+2x2-x-2axlnx零点的个数,并说明理由?
(3)设函数g(x)=ex-2x2+4x+t(t为常数),若使3-f(x)≤x+m≤g(x)在[0,+∞)上恒成立的实数m有且只有一个,求实数t的值.(e7>103)
(1)∵f(x)=x(x-1)2=x3-2x2+x,
∴f′(x)=3x2-4x+1,
令f′(x)=3x2-4x+1=0,得x1=
,x2=1,
列表讨论
由上表知:f(x)的增区间是 (-∞,
),(1,+∞),减区间是(
,1),
∴当x=1时,f(x)取极小值f(1)=0.…3分
(2)∵f(x)=x(x-1)2=x3-2x2+x,
∴F(x)=f(x)+2x2-x-2axlnx=x3-2axlnx,
∵x>0,∴由F(x)=x3-2axlnx=0,得x2=2alnx,
∴当0≤a<e时,函数零点的个数为0;
当a<0或a=e时,函数零点的个数为1;
当a>e时,函数零点的个数为2.
(3)∵g(x)=ex-2x2+4x+t,
∴由3-f(x)≤x+m≤g(x)在[0,+∞)上恒成立,得
3-x3+2x2-x≤x+m≤ex-2x2+4x+t在[0,+∞)上恒成立,
∴h1(x)=x+m-(3-x3+2x2-x)=x3-2x2+2x+m-3≥0在[0,+∞)上恒成立,
∵h1′(x)=3x2-4x+2=3(x-
)2+
≥
,
∴h1(x)在[0,+∞)上是增函数,
∴h1(x)在[0,+∞)上的最小值h1(x)min=h1(0)=m-3≥0.
∴m≥3,
∵实数m有且只有一个,
∴m=3
h2(x)=ex-2x2+4x+t-x-m=ex-2x2+3x+t-3≥0在[0,+∞)上恒成立,
∴h2(x)=ex-2x2+3x+t≥3在[0,+∞)上恒成立,
当x=0时,h2(0)=1+t≥3,
∴t≥2.
∴f′(x)=3x2-4x+1,
令f′(x)=3x2-4x+1=0,得x1=
| 1 |
| 3 |
列表讨论
| x | (-∞,
|
|
(
|
1 | (1,+∞) | ||||||
| f′(x) | + | 0 | - | 0 | + | ||||||
| f(x) | ↑ | 极大值 | ↓ | 极小值 | ↑ |
| 1 |
| 3 |
| 1 |
| 3 |
∴当x=1时,f(x)取极小值f(1)=0.…3分
(2)∵f(x)=x(x-1)2=x3-2x2+x,
∴F(x)=f(x)+2x2-x-2axlnx=x3-2axlnx,
∵x>0,∴由F(x)=x3-2axlnx=0,得x2=2alnx,
∴当0≤a<e时,函数零点的个数为0;
当a<0或a=e时,函数零点的个数为1;
当a>e时,函数零点的个数为2.
(3)∵g(x)=ex-2x2+4x+t,
∴由3-f(x)≤x+m≤g(x)在[0,+∞)上恒成立,得
3-x3+2x2-x≤x+m≤ex-2x2+4x+t在[0,+∞)上恒成立,
∴h1(x)=x+m-(3-x3+2x2-x)=x3-2x2+2x+m-3≥0在[0,+∞)上恒成立,
∵h1′(x)=3x2-4x+2=3(x-
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
∴h1(x)在[0,+∞)上是增函数,
∴h1(x)在[0,+∞)上的最小值h1(x)min=h1(0)=m-3≥0.
∴m≥3,
∵实数m有且只有一个,
∴m=3
h2(x)=ex-2x2+4x+t-x-m=ex-2x2+3x+t-3≥0在[0,+∞)上恒成立,
∴h2(x)=ex-2x2+3x+t≥3在[0,+∞)上恒成立,
当x=0时,h2(0)=1+t≥3,
∴t≥2.
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
| A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|