题目内容
已知函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,则函数
在区间(1,+∞)上是
- A.有两个零点
- B.有一个零点
- C.无零点
- D.无法确定
C
分析:由函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值得出a的取值范围,进一步应用a的范围对
在区间(1,+∞)上的零点情况加以判断.
解答:∵函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,
∴函数f(x)=x2-2ax+a的对称轴应当位于区间(-∞,1)的左边,
∴有:a<1.令g(x)=
=x+
-2a,
当a<0时,g(x)=x+
-2a在区间(1,+∞)上为增函数,此时,g(x)min>g(1)=1-a>0,
当a=0时,g(x)=x在区间(1,+∞)上为增函数,此时,g(x)min>g(1)=1>0,
当0<a<1时,g(x)=x+
-2a≥2
-2a=2
-2a<0,
∴g(x)在区间(1,+∞)上无零点.
故选C.
点评:本题考查二次函数在给定区间上的最值,同时考查了函数零点的判断.在本题中并没有应用零点存在性定理来判断.
分析:由函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值得出a的取值范围,进一步应用a的范围对
解答:∵函数f(x)=x2-2ax+a在区间(-∞,1)上有最小值,
∴函数f(x)=x2-2ax+a的对称轴应当位于区间(-∞,1)的左边,
∴有:a<1.令g(x)=
当a<0时,g(x)=x+
当a=0时,g(x)=x在区间(1,+∞)上为增函数,此时,g(x)min>g(1)=1>0,
当0<a<1时,g(x)=x+
∴g(x)在区间(1,+∞)上无零点.
故选C.
点评:本题考查二次函数在给定区间上的最值,同时考查了函数零点的判断.在本题中并没有应用零点存在性定理来判断.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|