题目内容
(2012•安徽模拟)已知数列{an}的前n项和Sn满足:Sn=
(an-1)(其中a为常数且a≠0,a≠1,n∈N*)
(1)求数列{an}的通项公式;
(2)记bn=nan,求数列{bn}的前n项和Tn.
| a | a-1 |
(1)求数列{an}的通项公式;
(2)记bn=nan,求数列{bn}的前n项和Tn.
分析:(1)由Sn=
(an-1),知Sn+1=
(an+1-1),利用迭代法能求出an=an.
(2)由bn=n•an,知Tn=a+2a2+3a3+…+nan,利用错位相减法能求出数列{bn}的前n项和Tn.
| a |
| a-1 |
| a |
| a-1 |
(2)由bn=n•an,知Tn=a+2a2+3a3+…+nan,利用错位相减法能求出数列{bn}的前n项和Tn.
解答:解:(1)∵Sn=
(an-1),
∴Sn+1=
(an+1-1),
从而an+1=Sn+1-Sn=
(an+1-an),
∴an+1=a•an,
当n=1时,由Sn=
(an-1),得a1=a.
∴数列{an}是以a为首项,a为公比的等比数列,故an=an.
(2)由(1)得bn=n•an,
∴Tn=a+2a2+3a3+…+nan,
从而aTn=a2+2a3+3a4+…+nan+1,
两式相减,得(1-a)Tn=a+a2+a3+…+an-nan+1,
∵a≠0,且a≠1,
∴(1-a)Tn=
-nan+1
=
,
从而Tn=
.
| a |
| a-1 |
∴Sn+1=
| a |
| a-1 |
从而an+1=Sn+1-Sn=
| a |
| a-1 |
∴an+1=a•an,
当n=1时,由Sn=
| a |
| a-1 |
∴数列{an}是以a为首项,a为公比的等比数列,故an=an.
(2)由(1)得bn=n•an,
∴Tn=a+2a2+3a3+…+nan,
从而aTn=a2+2a3+3a4+…+nan+1,
两式相减,得(1-a)Tn=a+a2+a3+…+an-nan+1,
∵a≠0,且a≠1,
∴(1-a)Tn=
| a(1-an) |
| 1-a |
=
| nan+2-(n+1)an+1+a |
| 1-a |
从而Tn=
| nan+2-(n+1)an+1+a |
| (1-a)2 |
点评:本题考查数列的通项公式的应用,考查数列前n项和的求法,解题时要认真审题,注意迭代法和错位相减法的灵活运用.
练习册系列答案
相关题目