题目内容
1.已知各项均为正数的数列{an}的前n项的和为Sn,且对任意的n∈N?,都有2Sn=an2+an(1)求数列{an}的通项公式;
(2)数列{bn}满足b1=1,2bn+1-bn=0,(n∈N?).若cn=anbn,求数列{cn}的前n项和Tn.
分析 (1)当n=1时,得a1=1;当n≥2时,由2an=2Sn-2Sn-1,得an-an-1=1,从而可得结论;
(2)将2bn+1-bn=0变形可得bn为等比数列,由Tn及${\frac{1}{2}T}_{n}$的表达式相减,结合等比数列的前n项和的公式即得结论.
解答 解:(1)当n=1时,由2a1=2S1=$a_1^2+{a_1}$,a1>0,得a1=1,
当n≥2时,由2an=2Sn-2Sn-1=($a_n^2$+an)-($a_{n-1}^2+a_{n-1}^{\;}$),
得(an+an-1)(an-an-1-1)=0,
因为an+an-1>0,所以an-an-1=1,
故an=1+(n-1)×1=n;
(2)由b1=1,$\frac{{{b_{n+1}}}}{b_n}=\frac{1}{2}$,得bn=${(\frac{1}{2})^{n-1}}$,则cn=n${(\frac{1}{2})^{n-1}}$,
因为 Tn=$1+2{(\frac{1}{2})^1}+3{(\frac{1}{2})^2}+…+n{(\frac{1}{2})^{n-1}}$,
所以 $\frac{1}{2}{T_n}=\frac{1}{2}+2{(\frac{1}{2})^2}+…+(n-1){(\frac{1}{2})^{n-1}}+n{(\frac{1}{2})^n}$,
两式相减,得 $\frac{1}{2}{T_n}=1+\frac{1}{2}+{(\frac{1}{2})^2}+…+{(\frac{1}{2})^{n-1}}-n{(\frac{1}{2})^n}$
=$\frac{1×[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$-$n(\frac{1}{2})^{n}$
=2-(n+2)${(\frac{1}{2})^n}$,
所以 Tn=4-(n+2)${(\frac{1}{2})^{n-1}}$.
点评 本题考查数列的通项公式及前n项和的求法,注意解题方法的积累,属于中档题.
| A. | $\frac{7}{8}$ | B. | $\frac{{\sqrt{15}}}{4}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\sqrt{3}$ |
| A. | “若am2<bm2,则a<b”的逆命题为真命题 | |
| B. | 命题p:?x∈[0,1],ex≥1;命题q:?x∈R,x2+x+1<0,则命题p∨q为真命题 | |
| C. | “a>b”是“a2>b2”的充分不必要条件 | |
| D. | 若f(x-1)为R上的偶函数,则函数f(x)的图象关于直线x=1对称 |
| A. | 8 | B. | 4 | C. | -8 | D. | -4 |
| A. | ?x∈R,x2+2x+2>0 | B. | ?x∈R,x2+2x+2≥0 | ||
| C. | ?x0∈R,x02+2x0+2<0 | D. | ?x∈R,x02+2x0+2>0 |