题目内容
设.若对任意实数都有,则满足条件的有序实数组的组数为 .
如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=AD.
(Ⅰ)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(Ⅱ)证明:平面PAB⊥平面PBD.
将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图, 长为 ,长为,其中B1与C在平面AA1O1O的同侧.
(1)求圆柱的体积与侧面积;
(2)求异面直线O1B1与OC所成的角的大小.
设,其中为虚数单位,则z的虚部等于______________________.
设、、是定义域为R的三个函数,对于命题:①若、、均是增函数,则、、中至少有一个增函数;②若、、均是以为周期的函数,则、、均是以为周期的函数,下列判断正确的是( ).
(A)①和②均为真命题
(B)①和②均为假命题
(C)①为真命题,②为假命题
(D)①为假命题,②为真命题
在的二项展开式中,所有项的二项式系数之和为256,则常数项等于_________.
设x,则不等式的解集为_____________.
为了得到函数的图象,可将函数的图象( )
A.向左平移个单位长度 B.向右平移个单位长度
C.向左平移个单位长度 D.向右平移个单位长度
如图,已知双曲线(,)的左右焦点分别为F1、F2,|F1F2|=8,P是双曲线右支上的一点,直线PF2与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=2,则该双曲线的离心率为( )
A. B. C.2 D.3