题目内容
| π |
| 4 |
| π |
| 2 |
| B |
| OA |
| OB |
分析:令y=tan(
x-
)=0,则
x-
=kπ(k∈Z),取k=0,即可得到点A的坐标.令y=tan(
x-
)=1,则
x-
=kπ+
(k∈Z),取k=0,即可得到点B的坐标.再利用数量积运算即可得出.
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
解答:解:令y=tan(
x-
)=0,则
x-
=kπ(k∈Z),
取k=0,解得x=2,∴A(2,0).
令y=tan(
x-
)=1,则
x-
=kπ+
(k∈Z),
取k=0,解得x=3,∴B(3,1).
∴(
-
)•
=[(3,1)-(2,0)]•(3,1)=4.
故答案为:4.
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
取k=0,解得x=2,∴A(2,0).
令y=tan(
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
| π |
| 2 |
| π |
| 4 |
取k=0,解得x=3,∴B(3,1).
∴(
| OB |
| OA |
| OB |
故答案为:4.
点评:本题考查了正切函数的图象与性质、数量积运算,属于中档题.
练习册系列答案
相关题目