题目内容
已知向量| a |
| b |
| 1 |
| 4 |
(1)当x∈[0,
| π |
| 4 |
| a |
| b |
(2)定义函数f(x)=
| a |
| a |
| b |
分析:(1)若
⊥
,则
•
=0,求得sin2x 的值,根据2x的范围,求出2x的值,即得x的值.
(2)化简f(x)的解析式 为
+
sin(2x+
),则 T=π,最大值为
+
,此时 x=kπ+
,k∈z.
| a |
| b |
| a |
| b |
(2)化简f(x)的解析式 为
| 5 |
| 4 |
| ||
| 2 |
| π |
| 4 |
| 5 |
| 4 |
| ||
| 2 |
| π |
| 8 |
解答:解:(1)若
⊥
,则
•
=
-sinxcosx=0,∴sin2x=
,∵x∈[0,
],
∴2x∈[0,
],∴2x=
,x=
.
(2)∵
-
=(
,cosx+sinx ),∴f(x)=
+cosx (cosx+sinx )=
+
=
+
sin(2x+
),
则 T=π,最大值为
+
,此时 x=kπ+
,k∈z.
| a |
| b |
| a |
| b |
| 1 |
| 4 |
| 1 |
| 2 |
| π |
| 4 |
∴2x∈[0,
| π |
| 2 |
| π |
| 6 |
| π |
| 12 |
(2)∵
| a |
| b |
| 3 |
| 4 |
| 3 |
| 4 |
| 3 |
| 4 |
| 1+cos2x+sin2x |
| 2 |
=
| 5 |
| 4 |
| ||
| 2 |
| π |
| 4 |
则 T=π,最大值为
| 5 |
| 4 |
| ||
| 2 |
| π |
| 8 |
点评:本题考查两个向量的数量积公式,两个向量垂直的性质,正弦函数的值域,化简f(x)的解析式是解题的关键.
练习册系列答案
相关题目
已知向量
=(1,2),
=(2,-3).若向量
满足(
+
)∥
,
⊥(
+
),则
=( )
| a |
| b |
| c |
| c |
| a |
| b |
| c |
| a |
| b |
| c |
A、(
| ||||
B、(-
| ||||
C、(
| ||||
D、(-
|
已知向量
=(1,3),
=(-2,-6),|
|=
,若(
+
)•
=5,则
与
的夹角为( )
| a |
| b |
| c |
| 10 |
| a |
| b |
| c |
| a |
| c |
| A、30° | B、60° |
| C、120° | D、150° |