题目内容
已知f(x)=-4+
|
| 1 |
| an+1 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求证:Sn>
| 1 |
| 2 |
| 4n+1 |
分析:(Ⅰ)由-
=f(an) =-
,且an>0,知
=
,由此知an2=
,从而得到数列{an}的通项公式;
(Ⅱ)由an=
,知an=
>
=
,由此能够证明Sn>
-1,n∈N*.
| 1 |
| an+1 |
4+
|
| 1 |
| an+1 |
4+
|
| 1 |
| 4n-3 |
(Ⅱ)由an=
| 1 | ||
|
| 2 | ||
2
|
| 2 | ||||
|
| ||||
| 2 |
| 1 |
| 2 |
| 4n+1 |
解答:解:(Ⅰ)-
=f(an) =-
,且an>0,
∴
=
,
∴
-
=4(n∈N+),
∴数列{
}是等差数列,首项
公差d=4
∴
=1+4(n-1)
∴an2=
∵an>0
∴an=
(n∈N+)(4分)(6分)
(Ⅱ)证明:an=
∴an=
>
=
,
∴Sn=a1+a2+…+an>
(
-1)+(
-
)+…+
(
-
)
=
-1
| 1 |
| an+1 |
4+
|
∴
| 1 |
| an+1 |
4+
|
∴
| 1 |
| an+12 |
| 1 |
| an2 |
∴数列{
| 1 |
| an2 |
| 1 |
| a12 |
∴
| 1 |
| a12 |
∴an2=
| 1 |
| 4n-3 |
∵an>0
∴an=
| 1 | ||
|
(Ⅱ)证明:an=
| 1 | ||
|
∴an=
| 2 | ||
2
|
| 2 | ||||
|
| ||||
| 2 |
∴Sn=a1+a2+…+an>
| 1 |
| 2 |
| 5 |
| 9 |
| 5 |
| 1 |
| 2 |
| 4n+1 |
| 4n-3 |
=
| 1 |
| 2 |
| 4n+1 |
点评:本题考查数列通项公式的求法和不等式的证明,解题时要认真审题,注意数列性质的合理运用.
练习册系列答案
相关题目