题目内容
已知梯形的两对角线分别为a和b,且它们的夹角为60°,那么该梯形的面积为
- A.
ab - B.
ab - C.
ab - D.
ab
B
分析:设梯形ABCD,对角线AC和BD相交于O,AC=a,BD=b,过C作CE∥BD,交AB延长线于E,则∠BOC=60°,则四边形ABEC是平行四边形,根据S梯形ABCD=S△ACE即可求出答案.
解答:设梯形ABCD,对角线AC和BD相交于O,AC=a,BD=b,
过C作CE∥BD,交AB延长线于E,则∠BOC=60°,则四边形BECD是平行四边形,
∴∠ACE=120°,∴CE=BD,
∵S△BCE=S△BCD=S△ACD,
故S梯形ABCD=S△ACE=
AC•CE•sin120°=
,
故选B.
点评:本题考查了梯形的性质,三角形中的几何计算,关键是正确地作辅助线进行解题,属于中档题.
分析:设梯形ABCD,对角线AC和BD相交于O,AC=a,BD=b,过C作CE∥BD,交AB延长线于E,则∠BOC=60°,则四边形ABEC是平行四边形,根据S梯形ABCD=S△ACE即可求出答案.
解答:设梯形ABCD,对角线AC和BD相交于O,AC=a,BD=b,
过C作CE∥BD,交AB延长线于E,则∠BOC=60°,则四边形BECD是平行四边形,
∴∠ACE=120°,∴CE=BD,
∵S△BCE=S△BCD=S△ACD,
故S梯形ABCD=S△ACE=
故选B.
点评:本题考查了梯形的性质,三角形中的几何计算,关键是正确地作辅助线进行解题,属于中档题.
练习册系列答案
相关题目