题目内容
设向量| m |
| n |
| 2 |
| 2 |
| 3 |
| 2 |
| m |
| n |
求:(1)sin(θ+
| π |
| 4 |
(2)cos(θ+
| 7 |
| 12 |
分析:(1)利用
•
=1,化简运算,可以求得(1)的结果;
(2)利用三角变换cos(θ+
π)=cos[(θ+
π)+
π]即可求解.
| m |
| n |
(2)利用三角变换cos(θ+
| 7 |
| 12 |
| 1 |
| 4 |
| 1 |
| 3 |
解答:解:(1)依题意,
•
=cosθ(2
+sinθ)+sinθ(2
-cosθ)=2
(sinθ+cosθ)=4sin(θ+
),又
•
=1,sin(θ+
)=
(2)由于θ∈(-
π,-π),则θ+
∈(-
π,-
π)
结合sin(θ+
)=
,可得cos(θ+
)=-
则cos(θ+
π)=cos[(θ+
π)+
π]=(-
)×
-
×
=-
| m |
| n |
| 2 |
| 2 |
| 2 |
| π |
| 4 |
| m |
| n |
| π |
| 4 |
| 1 |
| 4 |
(2)由于θ∈(-
| 3 |
| 2 |
| π |
| 4 |
| 5 |
| 4 |
| 3 |
| 4 |
结合sin(θ+
| π |
| 4 |
| 1 |
| 4 |
| π |
| 4 |
| ||
| 4 |
则cos(θ+
| 7 |
| 12 |
| 1 |
| 4 |
| 1 |
| 3 |
| ||
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| ||
| 2 |
| ||||
| 8 |
点评:本题考查平面向量的数量积,两角和与差的正弦函数、余弦函数的运算,是中档题.
练习册系列答案
相关题目