题目内容
14.如图,在△ABC中,∠C=90°,AD为∠BAC的角平分线,BC=64,BD:DC=9:7.求点D到AB的距离.分析 过D作DE⊥AB于E,根据角平分线的性质可以得到DE=CD,而根据已知条件可以求出CD的长,也就求出了DE的长.
解答 解:如图,过D作DE⊥AB于E,
∵AD平分∠BAC交BC于D,而∠C=90°,
∴CD=DE,
∵BC=64,且BD:CD=9:7,
∴CD=64×$\frac{7}{9+7}$=28,
∴DE=28,则点D到AB边的距离为28.
点评 此题主要利用角平分线的性质解题,把求则点D到AB的距离转化成求CD的长.
练习册系列答案
相关题目
5.直线$\frac{x}{a}$-$\frac{y}{b}$=1与椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的公共点个数为( )
| A. | 0 | B. | 1 | C. | 2 | D. | 不确定 |
19.在数列{an}中,对任意正整数n都有an+1-2an=0(an≠0),则$\frac{2{a}_{1}+{a}_{2}}{2{a}_{3}+{a}_{4}}$=( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |