ÌâÄ¿ÄÚÈÝ
£¨2007•Õ¢±±ÇøÒ»Ä££©ÒÑÖªº¯Êýf£¨x£©=ax+b£¬µ±x¡Ê[a1£¬b1]ʱf£¨x£©µÄÖµÓòΪ[a2£¬b2]£¬µ±x¡Ê[a2£¬b2]ʱf£¨x£©µÄÖµÓòΪ[a3£¬b3]£¬¡ÒÀ´ËÀàÍÆ£¬Ò»°ãµØ£¬µ±x¡Ê[an-1£¬bn-1]ʱf£¨x£©µÄÖµÓòΪ[an£¬bn]£¬ÆäÖÐa¡¢bΪ³£ÊýÇÒa1=0£¬b1=1
£¨1£©Èôa=1£¬ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£®
£¨2£©Èôa£¾0ÇÒa¡Ù1£¬ÒªÊ¹ÊýÁÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬ÇóbµÄÖµ£®
£¨3£©Èôa£¼0£¬ÉèÊýÁÐ{an}£¬{bn}µÄǰnÏîºÍ·Ö±ðΪSn£¬Tn£¬Çó£¨T1+T2+¡+T2000£©-£¨S1+S2+¡+S2000£©µÄÖµ£®
£¨1£©Èôa=1£¬ÇóÊýÁÐ{an}£¬{bn}µÄͨÏʽ£®
£¨2£©Èôa£¾0ÇÒa¡Ù1£¬ÒªÊ¹ÊýÁÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬ÇóbµÄÖµ£®
£¨3£©Èôa£¼0£¬ÉèÊýÁÐ{an}£¬{bn}µÄǰnÏîºÍ·Ö±ðΪSn£¬Tn£¬Çó£¨T1+T2+¡+T2000£©-£¨S1+S2+¡+S2000£©µÄÖµ£®
·ÖÎö£º£¨1£©a=1ʱ£¬f£¨x£©=x+bÔÚRÉÏÊÇÔöº¯Êý£¬ÓÉÌâÒâÖª£¬an=f£¨an-1£©=an-1+b£¬bn=f£¨bn-1£©=bn-1+b£¬´Ó¶ø¿ÉÅжÏ{an}¡¢{bn}¶¼Êǹ«²îΪbµÄµÈ²îÊýÁУ®¸ù¾ÝµÈ²î¡¢µÈ±ÈÊýÁеÄͨÏʽ¼°a1=0£¬b1=1¿ÉµÃÁ½ÊýÁеÄͨÏʽ£»
£¨2£©Ò×Öªf£¨x£©=ax+bÔÚRÉÏÒ²ÊÇÔöº¯Êý£¬ÓÉÒÑÖªÓÐbn=f£¨bn-1£©=abn-1+b£¨n¡Ý2£©£¬¿É±äÐÎΪ£º
=a+
£¬ÈôÓÐ{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬Ôò
Êdz£Êý£¬Óɴ˿ɵÃbÖµ£»
£¨3£©Ò×Öªf£¨x£©=ax+bÔÚRÉÏÊǼõº¯Êý£¬ÓÉÒÑÖª¿ÉµÃ£¬bn=f£¨an-1£©=a•an-1+b£¬an=f£¨bn-1£©=a•bn-1+b£¬Ôòbn-an=-a£¨bn-1-an-1£©£¨n¡Ý2£©£¬Ò×Öª£¬{bn-an}ÊÇÒÔ1ΪÊ×Ï-aΪ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¿ÉµÃbn-an£¬´Ó¶ø¿ÉÇóTn-Sn£¬Ôò¿ÉÇóµÃ£¬£¨T1+T2+¡+T2000£©-£¨S1+S2+¡+S2000£©=£¨T1-S1£©+£¨T2-S2£©+¡+£¨T2000-S2000£©µÄÖµ£»
£¨2£©Ò×Öªf£¨x£©=ax+bÔÚRÉÏÒ²ÊÇÔöº¯Êý£¬ÓÉÒÑÖªÓÐbn=f£¨bn-1£©=abn-1+b£¨n¡Ý2£©£¬¿É±äÐÎΪ£º
| bn |
| bn-1 |
| b |
| bn-1 |
| b |
| bn-1 |
£¨3£©Ò×Öªf£¨x£©=ax+bÔÚRÉÏÊǼõº¯Êý£¬ÓÉÒÑÖª¿ÉµÃ£¬bn=f£¨an-1£©=a•an-1+b£¬an=f£¨bn-1£©=a•bn-1+b£¬Ôòbn-an=-a£¨bn-1-an-1£©£¨n¡Ý2£©£¬Ò×Öª£¬{bn-an}ÊÇÒÔ1ΪÊ×Ï-aΪ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¿ÉµÃbn-an£¬´Ó¶ø¿ÉÇóTn-Sn£¬Ôò¿ÉÇóµÃ£¬£¨T1+T2+¡+T2000£©-£¨S1+S2+¡+S2000£©=£¨T1-S1£©+£¨T2-S2£©+¡+£¨T2000-S2000£©µÄÖµ£»
½â´ð£º½â£º£¨1£©a=1ʱ£¬f£¨x£©=x+bÔÚRÉÏÊÇÔöº¯Êý£¬
ÓÉÒÑÖª£¬µ±n¡Ý2ʱ£¬x¡Ê[an-1£¬bn-1]£¬f£¨x£©µÄÖµÓòÊÇ[an£¬bn]£¬
¡àan=f£¨an-1£©=an-1+b£¬bn=f£¨bn-1£©=bn-1+b£¬
¡à{an}¡¢{bn}¶¼Êǹ«²îΪbµÄµÈ²îÊýÁУ®
¡ßa1=0£¬b1=1£¬
¡àan=£¨n-1£©b£¬bn=£¨n-1£©b+1£»
£¨2£©¡ßa£¾0£¬a¡Ù1£¬
¡àf£¨x£©=ax+bÔÚRÉÏÒ²ÊÇÔöº¯Êý£¬
ÓÉÒÑÖªÓÐbn=f£¨bn-1£©=abn-1+b£¬¼´bn=abn-1+b£¨n¡Ý2£©£¬
¡à
=a+
£¬
Èô{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬Ôò
Êdz£Êý£¬ËùÒÔb=0£»
£¨3£©¡ßa£¼0£¬¡àf£¨x£©=ax+bÔÚRÉÏÊǼõº¯Êý£¬
ÓÉÒÑÖª¿ÉµÃ£¬bn=f£¨an-1£©=a•an-1+b£¬an=f£¨bn-1£©=a•bn-1+b£¬
¡àbn-an=-a£¨bn-1-an-1£©£¨n¡Ý2£©£¬
¡à{bn-an}ÊÇÒÔ1ΪÊ×Ï-aΪ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡àbn-an=£¨-a£©n-1£¬
¡àTn-Sn=£¨b1-a1£©+£¨b2-a2£©+¡+£¨bn-an£©=
£¬
ÓÚÊÇ£¬£¨T1+T2+¡+T2000£©-£¨S1+S2+¡+S2000£©
=£¨T1-S1£©+£¨T2-S2£©+¡+£¨T2000-S2000£©
=
£®
ÓÉÒÑÖª£¬µ±n¡Ý2ʱ£¬x¡Ê[an-1£¬bn-1]£¬f£¨x£©µÄÖµÓòÊÇ[an£¬bn]£¬
¡àan=f£¨an-1£©=an-1+b£¬bn=f£¨bn-1£©=bn-1+b£¬
¡à{an}¡¢{bn}¶¼Êǹ«²îΪbµÄµÈ²îÊýÁУ®
¡ßa1=0£¬b1=1£¬
¡àan=£¨n-1£©b£¬bn=£¨n-1£©b+1£»
£¨2£©¡ßa£¾0£¬a¡Ù1£¬
¡àf£¨x£©=ax+bÔÚRÉÏÒ²ÊÇÔöº¯Êý£¬
ÓÉÒÑÖªÓÐbn=f£¨bn-1£©=abn-1+b£¬¼´bn=abn-1+b£¨n¡Ý2£©£¬
¡à
| bn |
| bn-1 |
| b |
| bn-1 |
Èô{bn}Êǹ«±È²»Îª1µÄµÈ±ÈÊýÁУ¬Ôò
| b |
| bn-1 |
£¨3£©¡ßa£¼0£¬¡àf£¨x£©=ax+bÔÚRÉÏÊǼõº¯Êý£¬
ÓÉÒÑÖª¿ÉµÃ£¬bn=f£¨an-1£©=a•an-1+b£¬an=f£¨bn-1£©=a•bn-1+b£¬
¡àbn-an=-a£¨bn-1-an-1£©£¨n¡Ý2£©£¬
¡à{bn-an}ÊÇÒÔ1ΪÊ×Ï-aΪ¹«±ÈµÄµÈ±ÈÊýÁУ¬
¡àbn-an=£¨-a£©n-1£¬
¡àTn-Sn=£¨b1-a1£©+£¨b2-a2£©+¡+£¨bn-an£©=
|
ÓÚÊÇ£¬£¨T1+T2+¡+T2000£©-£¨S1+S2+¡+S2000£©
=£¨T1-S1£©+£¨T2-S2£©+¡+£¨T2000-S2000£©
=
|
µãÆÀ£º±¾Ì⿼²éµÈ²îµÈ±ÈÊýÁеÄͨÏʽ¡¢ÊýÁÐÇóºÍµÈ֪ʶ£¬¿¼²éѧÉú×ÛºÏÔËÓÃ֪ʶ·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÄѶȽϴó£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿