题目内容
已知{an}是首项为1的等差数列,Sn是{an}的前n项和,且S5=a13,则数列{
}的前5项和为( )
| 1 |
| anan+1 |
A.
| B.
| C.
| D.
|
设等差数列{an}的公差为d,
∵S5=a13,
∴5×1+
d=1+12d,
解得d=2.
∴an=a1+(n-1)d=1+2(n-1)=2n-1.
∴
=
=
(
-
).
∴数列{
}的前n项和Tn=
[(1-
)+(
-
)++…+(
-
)]=
(1-
)=
.
∴T5=
=
.
故选B.
∵S5=a13,
∴5×1+
| 5×4 |
| 2 |
解得d=2.
∴an=a1+(n-1)d=1+2(n-1)=2n-1.
∴
| 1 |
| anan+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴数列{
| 1 |
| anan+1 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
∴T5=
| 5 |
| 2×5+1 |
| 5 |
| 11 |
故选B.
练习册系列答案
相关题目