题目内容

(Ⅰ)已知a>0,b>0,c>0,求证:a(b2+c2)+b(a2+c2)+c(a2+b2)≥6abc
(Ⅱ)求证:数学公式

证明:(Ⅰ)∵a2+b2≥2ab,c>0
∴c(a2+b2)≥2abc,
同理可得:b(a2+c2)≥2abc;
a(b2+c2)≥2abc.
上面三个不等式相加可得:a(b2+c2)+b(a2+c2)+c(a2+b2)≥6abc.
原命题得证.
(Ⅱ)要证:
即证:
只须证:11+2 <11+2
转化为证:
而上式恒成立.
所以原命题得证.
分析:(Ⅰ)先根据a2+b2≥2ab,c>0得到c(a2+b2)≥2abc;同理可得b(a2+c2)≥2abc;a(b2+c2)≥2abc;再根据同向不等式可以相加的性质即可证明不等式.
(Ⅱ)采用分析法来证,先把不等式转化为:,两边平方,整理后得到一恒成立的不等式即可.
点评:本题主要考查不等式的证明.第二问的证明用到了分析法,分析法是从要证明的结论出发,一步步向前推,得到一个恒成立的不等式,或明显成立的结论即可.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网