题目内容
(12分)从⊙O外一点P引圆的两条切线PA,PB及一条割线PCD,A,B为切点.

求证:
=
.
求证:
见解析。
从⊙O外一点P引圆的两条切线PA,PB,则
,根据弦切角等于圆周角,可证出
与
相似,
与
相似,对应边成比例,即证得结论.
∵PA为⊙O的切线,∴∠PAC=∠PDA,
而∠APC=∠DPA,∴△PAC∽△PDA,
则
=
.同理
=
.
∵PA=PB,∴
=
.∴
=
.
∵PA为⊙O的切线,∴∠PAC=∠PDA,
而∠APC=∠DPA,∴△PAC∽△PDA,
则
∵PA=PB,∴
练习册系列答案
相关题目