题目内容
(2012•汕头二模)已知数列{an}是等差数列,a3=5,a5=9.数列{bn}的前n项和为Sn,且Sn=
(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)若cn=an•bn,求数列{cn}的前n项和 Tn.
| 1-bn | 2 |
(1)求数列{an}和{bn}的通项公式;
(2)若cn=an•bn,求数列{cn}的前n项和 Tn.
分析:(1)法一:设数列的公差为d,利用等差数列的通项公式表示已知,解方程可求得a1,d,进而可求an,
法二:由等差数列的性质d=
可求公差d,然后结合通项an=a5+(n-5)d可求通项,由已知n=1可求b1,n≥2时,bn=sn-sn-1可求bn与bn-1的递推关系,结合等比数列的通项可求bn,
(2)代入cn=an•bn利用错位相减求和即可求解
法二:由等差数列的性质d=
| a5-a3 |
| 5-3 |
(2)代入cn=an•bn利用错位相减求和即可求解
解答:解:(1)法一:设数列的公差为d
由题意可得
解得a1=1,d=2
∴an=1+2(n-1)=2n-1
法二:设数列的公差是d
∴d=
=
=2
∴an=a5+2(n-5)=9+2n-10=2n-1
∵sn=
当n=1时,b1=s1=
∴b1=
当n≥2时,bn=sn-sn-1=
(1-bn)-
(1-bn-1)
=
(bn-1-bn)
∴
=
∴数列{bn}是以
为首项,以
为公比的等比数列
∴bn=b1qn-1=(
)n
(2)cn=an•bn=
∴Tn=
+
+…+
Tn=
+
+…+
+
lll
两式相减可得,
=
+2(
+
+…+
)-
=
+
-
=
-
Tn=1-
由题意可得
|
解得a1=1,d=2
∴an=1+2(n-1)=2n-1
法二:设数列的公差是d
∴d=
| a5-a3 |
| 5-3 |
| 9-5 |
| 2 |
∴an=a5+2(n-5)=9+2n-10=2n-1
∵sn=
| 1-bn |
| 2 |
当n=1时,b1=s1=
| 1-b1 |
| 2 |
∴b1=
| 1 |
| 3 |
当n≥2时,bn=sn-sn-1=
| 1 |
| 2 |
| 1 |
| 2 |
=
| 1 |
| 2 |
∴
| bn |
| bn-1 |
| 1 |
| 3 |
∴数列{bn}是以
| 1 |
| 3 |
| 1 |
| 3 |
∴bn=b1qn-1=(
| 1 |
| 3 |
(2)cn=an•bn=
| 2n-1 |
| 3n |
∴Tn=
| 1 |
| 3 |
| 3 |
| 32 |
| 2n-1 |
| 3n |
| 1 |
| 3 |
| 1 |
| 32 |
| 3 |
| 33 |
| 2n-3 |
| 3n |
| 2n-1 |
| 3n+1 |
两式相减可得,
| 2Tn |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
| 2n-1 |
| 3n+1 |
=
| 1 |
| 3 |
| ||||
1-
|
| 2n-1 |
| 3n+1 |
=
| 2 |
| 3 |
| 2n+2 |
| 3n+1 |
Tn=1-
| n+1 |
| 3n |
点评:本题主要考查了等差数列的通项 公式的应用及利用数列的递推公式求解数列的通项公式,错位相减求和方法的应用,属于数列知识的简单综合
练习册系列答案
相关题目