题目内容
设二次函数f(x)=ax2+bx+c的导数为f'(x),f′(0)>0,对于任意的实数x恒有f(x)≥0,则
的最小值是______.
| f(-2) |
| f′(0) |
∵f'(x)=2ax+b,
∴f'(0)=b>0;
∵对于任意实数x都有f(x)≥0,
∴a>0且b2-4ac≤0,
∴b2≤4ac,
∴c>0;
∴
=
=
-2≥
-2≥2-2=0,
当4a=c时取等号.
故答案为:0.
∴f'(0)=b>0;
∵对于任意实数x都有f(x)≥0,
∴a>0且b2-4ac≤0,
∴b2≤4ac,
∴c>0;
∴
| f(-2) |
| f′(0) |
| 4a-2b+c |
| b |
| 4a+c |
| b |
4
| ||
| b |
当4a=c时取等号.
故答案为:0.
练习册系列答案
相关题目
设二次函数f(x)=ax2+bx+c(a>0),方程f(x)-x=0的两个根x1、x2满足0<x1<x2<
,且函数f(x)的图象关于直线x=x0对称,则有( )
| 1 |
| a |
A、x0≤
| ||
B、x0>
| ||
C、x0<
| ||
D、x0≥
|