题目内容
已知角α、β满足:5
sinα+5cosα=8,
sinβ+
cosβ=2且α∈(0,
),β∈(
,
),求cos(α+β)的值.
| 3 |
| 2 |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 2 |
∵5
sinα+5cosα=8,∴sin(α+
)=
,
∵α∈(0,
),∴α+
∈(
,
),∴cos(α+
)=
.
又∵
sinβ+
cosβ=2,∴sin(β+
)=
,
∵β∈(
,
),∴β+
∈(
,
),∴cos(β+
)=-
,
∴cos(α+β)=sin[
+(α+β)]=sin[(α+
)+(β+
)]=sin(α+
)cos(β+
)+cos(α+
)sin(β+
)=-
,
| 3 |
| π |
| 6 |
| 4 |
| 5 |
∵α∈(0,
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 2 |
| π |
| 6 |
| 3 |
| 5 |
又∵
| 2 |
| 6 |
| π |
| 3 |
| ||
| 2 |
∵β∈(
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| 5π |
| 6 |
| π |
| 3 |
| ||
| 2 |
∴cos(α+β)=sin[
| π |
| 2 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| ||
| 10 |
练习册系列答案
相关题目