题目内容
已知棱长为a的正四面体ABCD内切球O,经过该棱锥A-BCD的中截面为M,则O到平面M的距离为
- A.

- B.

- C.

- D.

C
分析:先利用棱长为a的正四面体ABCD的高的公式:h=
a,再利用内切球O的半径即为高的
,最后利用O到平面α的距离正好是高的
,从而得到结果.
解答:
解:记棱锥A-BCD的高为AO1,且AO1=
a.
O在AO1上且OO1=
AO1;
AO1与面α交于M,则MO1=
AO1,
故MO=OO1=
AO1=
.
故答案为:
.
故选C.
点评:本小题主要考查点、线、面间的距离计算、组合体的几何性质、中截面等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
分析:先利用棱长为a的正四面体ABCD的高的公式:h=
解答:
O在AO1上且OO1=
AO1与面α交于M,则MO1=
故MO=OO1=
故答案为:
故选C.
点评:本小题主要考查点、线、面间的距离计算、组合体的几何性质、中截面等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.属于基础题.
练习册系列答案
相关题目