题目内容
已知中心在原点,焦点在x轴上,离心率为
| ||
| 2 |
| 2 |
| ||
| 2 |
(1)求椭圆方程;
(2)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为k1、k2,满足4k=k1+k2
①求证:m2为定值,并求出此定值;
②求△OPQ面积的取值范围.
分析:(1)由题设条件,设c=
k,a=2k,则b=k,椭圆方程为
+
=1,把点(
,
)代入,得k2=1,由此能求出椭圆方程.
(2)①由
,得(1+4k2)x2+8kmx+4(m2-1)=0,x1+x2 =-
,x1x2=
.直线OP,OQ的斜率依次为k1,k2,4k=k1+k2=
+
=
+
,由此解得m2=
.
②S△OPQ=
|x1-x2| • |m|=
,令
=t>1,得S△OPQ=
=
<1,由此能求出△OPQ面积的取值范围.
| 3 |
| x2 |
| 4k2 |
| y2 |
| k2 |
| 2 |
| ||
| 2 |
(2)①由
|
| 8km |
| 1+4k2 |
| 4(m2-1) |
| 1+4k2 |
| y1 |
| x1 |
| y2 |
| x2 |
| kx1+m |
| x1 |
| kx2+m |
| x2 |
| 1 |
| 2 |
②S△OPQ=
| 1 |
| 2 |
| ||
| 1+4k2 |
| 8k2+1 |
| 2t |
| t2+1 |
| 2 | ||
t+
|
解答:解:(1)由题设条件,设c=
k,a=2k,则b=k,
∴椭圆方程为
+
=1,
把点(
,
)代入,得k2=1,
∴椭圆方程为
+y2=1.
(2)①由
,得(1+4k2)x2+8kmx+4(m2-1)=0,
∴x1+x2 =-
,x1x2=
.
∵直线OP,OQ的斜率依次为k1,k2,
∴4k=k1+k2=
+
=
+
,
∴2kx1x2=m(x1+x2),由此解得m2=
,验证△>0成立.
②S△OPQ=
|x1-x2| • |m|=
,令
=t>1,
得S△OPQ=
=
<1,
∴S△OPQ∈(0,1).
| 3 |
∴椭圆方程为
| x2 |
| 4k2 |
| y2 |
| k2 |
把点(
| 2 |
| ||
| 2 |
∴椭圆方程为
| x2 |
| 4 |
(2)①由
|
∴x1+x2 =-
| 8km |
| 1+4k2 |
| 4(m2-1) |
| 1+4k2 |
∵直线OP,OQ的斜率依次为k1,k2,
∴4k=k1+k2=
| y1 |
| x1 |
| y2 |
| x2 |
| kx1+m |
| x1 |
| kx2+m |
| x2 |
∴2kx1x2=m(x1+x2),由此解得m2=
| 1 |
| 2 |
②S△OPQ=
| 1 |
| 2 |
| ||
| 1+4k2 |
| 8k2+1 |
得S△OPQ=
| 2t |
| t2+1 |
| 2 | ||
t+
|
∴S△OPQ∈(0,1).
点评:本题考查椭圆的方程和求法和直线与椭圆的位置关系的综合运用,解题时要注意椭圆性质的灵活运用.
练习册系列答案
相关题目