ÌâÄ¿ÄÚÈÝ
16£®ÒÔÏÂÈý¸öÃüÌ⣺¢Ùº¯Êýy=2sin£¨x+$\frac{¦Ð}{4}$£©cos£¨x-$\frac{¦Ð}{4}$£©£¬ÔÚx¡Ê[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$]ÉϵÄÖµÓòΪ[1+$\frac{\sqrt{3}}{2}$£¬2]
¢Úº¯Êýf£¨x£©=$\frac{2co{s}^{3}x-2co{s}^{2}x-cosx+1}{cosx-1}$µÄÖÜÆÚΪ¦Ð
¢Ûº¯Êýf£¨x£©=2sin£¨3x-$\frac{¦Ð}{4}$£©µÄͼÏóºÍº¯Êýg£¨x£©=2-2cos3xµÄͼÏó¹ØÓڵ㣨$\frac{¦Ð}{8}$£¬1£©¶Ô³Æ
ÆäÖÐÕýÈ·µÄÊÇ¢Ù¢Û£®
·ÖÎö Çó³öº¯Êýy=2sin£¨x+$\frac{¦Ð}{4}$£©cos£¨x-$\frac{¦Ð}{4}$£©£¬ÔÚx¡Ê[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$]ÉϵÄÖµÓò£¬¿ÉÅжϢ٣»Çó³öº¯Êýf£¨x£©=$\frac{2co{s}^{2}x-2co{s}^{2}x-cosx+1}{cosx-1}$µÄÖÜÆÚ£¬¿ÉÅжϢڣ»Çó³öº¯Êýf£¨x£©=2sin£¨3x-$\frac{¦Ð}{4}$£©µÄͼÏó¹ØÓڵ㣨$\frac{¦Ð}{8}$£¬1£©¶Ô³ÆµÄº¯ÊýͼÏóµÄ½âÎöʽ£¬¿ÉÅжϢۣ®
½â´ð ½â£º¢Ùº¯Êýy=2sin£¨x+$\frac{¦Ð}{4}$£©cos£¨x-$\frac{¦Ð}{4}$£©=2£¨$\frac{\sqrt{2}}{2}$sinx+$\frac{\sqrt{2}}{2}$cosx£©£¨$\frac{\sqrt{2}}{2}$cosx+$\frac{\sqrt{2}}{2}$sinx£©=£¨sinx+cosx£©2=sin2x+1£¬
µ±x¡Ê[$\frac{¦Ð}{6}$£¬$\frac{¦Ð}{3}$]ʱ£¬2x¡Ê[$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$]£¬sin2x+1¡Ê[1+$\frac{\sqrt{3}}{2}$£¬2]£¬¹Ê¢ÙÕýÈ·£»
¢Úº¯Êýf£¨x£©=$\frac{2co{s}^{3}x-2co{s}^{2}x-cosx+1}{cosx-1}$=2cos2x-1=cos2x£¬£¨x¡Ù2k¦Ð£¬k¡ÊZ£©µÄÖÜÆÚΪ2¦Ð£¬¹Ê¢Ú´íÎó£»
¢Ûº¯Êýf£¨x£©=2sin£¨3x-$\frac{¦Ð}{4}$£©µÄͼÏó¹ØÓڵ㣨$\frac{¦Ð}{8}$£¬1£©¶Ô³ÆµÄº¯ÊýͼÏóµÄ½âÎöʽΪ£ºg£¨x£©=2-f£¨$\frac{¦Ð}{4}$-x£©=2-2sin[3£¨$\frac{¦Ð}{4}$-x£©-$\frac{¦Ð}{4}$£©]=2-2sin£¨$\frac{¦Ð}{2}$-3x£©=2-2cos3x£¬¹Ê¢ÛÕýÈ·£»
¹ÊÕýÈ·µÄÃüÌâµÄÐòºÅΪ£º¢Ù¢Û£¬
¹Ê´ð°¸Îª£º¢Ù¢Û
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬴ËÀàÌâÐÍÍùÍù×ۺϽ϶àµÄÆäËü֪ʶµã£¬×ÛºÏÐÔÇ¿£¬ÄѶÈÖеµ£®
| A£® | ÃüÌâ¡°Èôx2=1£¬Ôòx=1¡±µÄ·ñÃüÌâΪ£º¡°Èôx2=1£¬Ôòx¡Ù1¡± | |
| B£® | ÒÑÖªÖ±Ïßl1£ºax+3y-1=0£¬l2£ºx+by+1=0£¬Ôòl1¡Íl2µÄ³äÒªÌõ¼þÊÇ$\frac{a}{b}$=-3 | |
| C£® | ÃüÌâ¡°?x0¡ÊR£¬Ê¹µÃx02+x0+1£¼0¡±µÄ·ñ¶¨ÊÇ£º¡°?x¡ÊR£¬¾ùÓÐx2+x+1£¼0¡± | |
| D£® | ÃüÌâ¡°Èôx=y£¬Ôòsinx=siny¡±µÄÄæ·ñÃüÌâÎªÕæÃüÌ⣮ |