题目内容
设函数f(x)=x(x-1)(x-a),(a>1)求导数f′(x); 并证明f(x)有两个不同的极值点x1,x2.分析:f(x)=x′(x-1)(x-a)+x(x-1)′(x-a)+x(x-1)(x-a)′证明f(x)有两个不同的极值点x1,x2.需证明f′(x)=0有两个不同实根x1,x2,且根的两边f′(x)符号相反.
解答:解:f′(x)=(x-1)(x-a)+x(x-a)+x(x-1)=3x2-2(a+1)x+a,
∵△=4(a+1)2-12a=4a2-4a+4=4(a-
)2+3>0,
∴f′(x)=0必有两个不同实根x1,x2,(不妨设x1<x2)
又∵f′(x)=的图象开口向上,
∴-∞<x<x1,或x2<x<+∞时,f′(x)>0,
x1<x<x2时,f′(x)<0,
∴f(x)有两个不同的极值点x1,x2
∵△=4(a+1)2-12a=4a2-4a+4=4(a-
| 1 |
| 2 |
∴f′(x)=0必有两个不同实根x1,x2,(不妨设x1<x2)
又∵f′(x)=的图象开口向上,
∴-∞<x<x1,或x2<x<+∞时,f′(x)>0,
x1<x<x2时,f′(x)<0,
∴f(x)有两个不同的极值点x1,x2
点评:本题主要考查导数与极值的关系,若f(a)=0:a的左侧f'(x)>0,a的右侧f'(x)<0则a是极大值点;a的左侧f'(x)<0,a的右侧f'(x)>0则a是极小值点.属于基础知识,基本运算的考查.求导时,可用对各个因式分式分别求导,也可把式子展开后再求导.
练习册系列答案
相关题目
设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是( )
| A、[-5,5] | ||||||||
B、[-
| ||||||||
C、[-
| ||||||||
D、[-
|