题目内容
定义在
上的函数
满足:①
(
为正常数);②当
时,
.若函数的所有极大值点均在同一条直线上,则
_____________.
或
.
解析试题分析:当
时,
,故函数
在
上单调递增,在
上单调递增,故函数
在
处取得极大值
,当
时,则
,此时
,此时,函数
在
处取得极大值
,对任意
,当
时,函数
在
处取得极大值
,故函数
的所有极大值点为
,由于这些极大值点均在同一直线上,则直线
的斜率为定值,即
为定值,故
或
,即
或
.
考点:1.函数的极值;2.直线的斜率
练习册系列答案
相关题目