题目内容

已知函数f(x)=x3-2ax2+x
(1)若函数f(x)在(1,+∞)上为增函数,求实数a的最大值;
(2)当x∈(0,+∞)时,f(x)≥ax恒成立,求a的取值范围.
分析:(1)由函数f(x)在(1,+∞)上为增函数,得f′(x)≥0(x>1)恒成立,进而可转化为函数最值问题解决.
(2)f(x)≥ax即x3-2ax2+x≥ax(x>0)恒成立,可变为a
x2+1
2x+1
(x>0)恒成立,只需y求出
x2+1
2x+1
在(0,+∞)上的最小值即可.
解答:解:(1)f′(x)=3x2-4ax+1,
∵f(x)在(1,+∞)上为增函数,
∴f′(x)=3x2-4ax+1≥0(x>1)恒成立,即a≤
3x
4
+
1
4x
(x>1)恒成立.
令h(x)=
3x
4
+
1
4x
,得h′(x)=
1
4
(3-
1
x2
)
1
4
(3-1)>0
(x>1),
∴h(x)在(1,+∞)上单调递增,h(x)>h(1)=
3
4
+
1
4
=1,
∴a≤1,故实数a的最大值为1.
(Ⅱ)由题意知x3-2ax2+x≥ax(x>0)恒成立,即a
x2+1
2x+1
(x>0)恒成立,
令r(x)=
x2+1
2x+1
(x>0),则r′(x)=
2(x2+x-1)
(2x+1)2
,由r′(x)<0得0<x
5
-1
2
;由r′(x)>0得x
5
-1
2

∴r(x)在(0,
5
-1
2
)上单调递减,在(
5
-1
2
,+∞)
上单调递增,∴r(x)min=r(
5
-1
2
)
=
5
-1
2

∴a≤
5
-1
2

故a的取值范围为(-∞,
5
-1
2
)
点评:本题考查了利用导数研究函数的单调性、最值问题,对于恒成立问题常转化为最值问题或分离参数后再求最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网