题目内容
方程的解的个数为( )
A.0个 B.1个 C.0个或1个 D.2个
已知过定点的直线与曲线相交于两点,为坐标原点,当的面
积取最大值时,直线的倾斜角为( )
A. B. C. D.
已知函数是定义在R上的偶函数, 且在区间上单调递增.若实数满足
,则的取值范围是( )
A.[1,2] B. C. D.(0,2]
方程的解是 .
已知集合,,则( )
A. B. C. D.
求下列函数的值域:
(1);
(2);
(3).
已知函数,,构造函数,定义如下:当时,,当时,,那么( )
A.有最小值0,无最大值 B.有最小值,无最大值
C.有最大值1,无最小值 D.无最小值,也无最大值
如图,直三棱柱的底面是边长为2的正三角形,分别是的中点。
(1)证明:平面平面;
(2)若直线与平面所成的角为,求三棱锥的体积.
在复平面内,复数(i是虚数单位)的共轭复数对应的点位于
A. 第四象限 B. 第三象限 C. 第二象限 D. 第一象限