题目内容

已知向量
a
=(cosx,sinx),
b
=(
3
cosx,cosx),若f(x)=
a
b
-
3
2

(1)写出函数f(x)图象的一条对称轴方程;
(2)求函数f(x)在区间[0,
π
2
]上的值域.
(1)∵向量
a
=(cosx,sinx),
b
=(
3
cosx,cosx),
a
b
=
3
cos2x+sinxcosx=
3
2
(1+cos2x)+
1
2
sin2x=sin(2x+
π
3
)+
3
2

由此可得f(x)=
a
b
-
3
2
=[sin(2x+
π
3
)+
3
2
]-
3
2
=sin(2x+
π
3

∵令2x+
π
3
=
π
2
+kπ(k∈Z),得x=
π
12
+
1
2
kπ(k∈Z)
∴取k=0,得函数y=sin(2x+
π
3
)图象的一条对称轴方程为x=
π
12

即函数y=f(x)图象的一条对称轴方程为x=
π
12

(2)由(1)得f(x)=sin(2x+
π
3

∵x∈[0,
π
2
],得2x+
π
3
∈[
π
3
3
]
∴当2x+
π
3
=
π
2
时,即x=
π
12
时,f(x)有最大值为1;
当2x+
π
3
=
3
时,即x=
π
2
时,f(x)有最小值为-
3
2

因此,可得函数f(x)在区间[0,
π
2
]上的值域为[-
3
2
,1].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网