题目内容
数列{an}满足a1=1,an+1=
(n∈N+).
(Ⅰ)证明:数列{
}是等差数列;
(Ⅱ)求数列{an}的通项公式an;
(Ⅲ)设bn=n(n+1)an,求数列{bn}的前n项和Sn.
| 2n+1an |
| an+2n |
(Ⅰ)证明:数列{
| 2n |
| an |
(Ⅱ)求数列{an}的通项公式an;
(Ⅲ)设bn=n(n+1)an,求数列{bn}的前n项和Sn.
(Ⅰ)证明:由已知可得
=
,
即
=
+1,
即
-
=1
∴数列{
}是公差为1的等差数列(5分)
(Ⅱ)由(Ⅰ)知
=
+(n-1)×1=n+1,
∴an=
(8分)
(Ⅲ)由(Ⅱ)知bn=n•2n
Sn=1•2+2•22+3•23++n•2n
2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1(10分)
相减得:-Sn=2+22+23++2n-n•2n+1=
-n•2n+1=2n+1-2-n•2n+1(12分)
∴Sn=(n-1)•2n+1+2
| an+1 |
| 2n+1 |
| an |
| an+2n |
即
| 2n+1 |
| an+1 |
| 2n |
| an |
即
| 2n+1 |
| an+1 |
| 2n |
| an |
∴数列{
| 2n |
| an |
(Ⅱ)由(Ⅰ)知
| 2n |
| an |
| 2 |
| a1 |
∴an=
| 2n |
| n+1 |
(Ⅲ)由(Ⅱ)知bn=n•2n
Sn=1•2+2•22+3•23++n•2n
2Sn=1•22+2•23+…+(n-1)•2n+n•2n+1(10分)
相减得:-Sn=2+22+23++2n-n•2n+1=
| 2(1-2n) |
| 1-2 |
∴Sn=(n-1)•2n+1+2
练习册系列答案
相关题目